The neuronal nitric oxide synthase (nNOS; encoded by NOS1)-derived nitric oxide (NO) plays an important role in maintaining skeletal muscle mass. In adult skeletal muscle, nNOS localizes to the cell membrane, cytosol, and nucleus, and regulates muscle hypertrophy and atrophy in various subcellular fractions. However, its role in muscle stem cells (also known as muscle satellite cells), which provide myonuclei for postnatal muscle growth, maintenance, and regeneration, remains unclear. The present study aimed to determine nNOS expression in muscle satellite cell-derived primary myoblasts during differentiation and its DNA methylation levels, an epigenetic modification that controls gene expression. Undifferentiated and differentiated satellite cell-derived primary myoblasts were found to express nNOS. Immunohistochemical analysis revealed that nNOS colocalized with Pax7 (satellite cell marker) only in the undifferentiated myoblasts. Furthermore, nNOS immunoreactivity spread to the cytosol of Pax7-negative differentiated myotube-like cells. The level of Nos1µ mRNA, the main isoform of skeletal muscle nNOS, was increased in differentiated satellite cell-derived primary myoblasts compared to that in the undifferentiated cells. However, Nos1 methylation levels remained unchanged during differentiation. These findings suggest that nNOS induction and the appropriate transition of its subcellular localization may contribute to muscle differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.14715/cmb/2023.69.13.20DOI Listing

Publication Analysis

Top Keywords

satellite cell-derived
16
cell-derived primary
16
primary myoblasts
16
skeletal muscle
12
muscle
9
nitric oxide
8
oxide synthase
8
myoblasts differentiation
8
muscle nnos
8
muscle satellite
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!