Waste management in low-income countries faces challenges with an average cost of $35/ton approximately 51% collection efficiency. Despite investments in treatment, processing, and recycling, the system remains unsustainable owing to poor planning and policies. The current analysis of Lahore's solid waste management (SWM) system, selected as a major city of a low-income country as a case study, focuses on collection efficiency and waste generation. However, it neglects the complex and dynamic nature of SWM systems. To capture the complexities and dynamic nature of the SWM system, system dynamic (SD) modeling is proposed for its effectiveness in modeling complex and dynamic systems. Unlike previous attempts at SD modeling that mostly consider only some components of the SWM system with varying success, this study attempts to use a holistic approach by considering all aspects of an integrated SWM system. In addition, this study explores different financial and management policies, highlighting the weaknesses of the system through a quantitative comparison of three scenarios: (1) business-as-usual (BAU) which considers the current trends in waste generation and practices of collection and disposal to landfill, (2) waste treatment system (WTS) in which various waste treatment systems are included to reduce burden on landfill, and (3) introduction of user fee with awareness campaigns (UFAC) which encourages community participation towards reduction in waste generation and financially supports the SWM. All three scenarios use four indices: waste generation, waste ending up in landfill, uncollected waste, and annual budget deficit as performance indices. These scenarios were simulated over a 25-year period using an SD model, covering all six components of the SWM system. The BAU scenario shows a 16% increase in waste generation, a 173% increase in landfill waste, an 11% reduction in uncollected waste, and a 64% increase in the budget deficit over the simulation period, indicating an unsustainable SWM system. The WTS scenario exhibits a 16% increase in waste generation, a 155% increase in landfill waste, an 11% reduction in uncollected waste, and a 61% increase in the budget deficit, showing a significant reduction in landfill waste and a slight reduction in deficit but it remains unsustainable. The UFAC scenario, however, results in a 40% reduction in waste generation, a 67% decrease in uncollected waste, an 8% decrease in landfill waste, and a 59% decrease in the budget deficit. These results demonstrate that instituting user fees for SWM services and incentivizing community participation towards waste reduction and segregation can make the SWM system of Lahore sustainable. This SD model provides insights for policymakers, aiding what-if analyses and long/short-term waste management plans for metropolitan cities in low-income countries. To validate the sustainability judgments based on performance indices, the analytical hierarchy process (AHP), a multi-criteria decision analysis (MCDA) tool commonly used for ranking policy decisions based on competing criteria, was employed. It considered the same four criteria as in the SD model. The results of the AHP analysis aligned with those of the SD model, ranking the UFAC scenario as the most sustainable option.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-31534-0DOI Listing

Publication Analysis

Top Keywords

swm system
28
waste generation
28
waste
23
landfill waste
20
waste management
16
uncollected waste
16
budget deficit
16
system
13
swm
10
analytical hierarchy
8

Similar Publications

The amygdala plays a crucial role in various behavioral functions and psychiatric conditions, with its morphology showing alterations in sleep disorders. While the impact of chronic sleep disorders on amygdala morphology has been studied, the effects of acute sleep deprivation (ASD) remain largely unexplored. The present study aimed to investigate the modulation between amygdala sub-region volumes and spatial working memory (SWM) performance under ASD conditions.

View Article and Find Full Text PDF

Urban environments are heavily influenced by various activities, leading to contamination of water sources by emerging contaminants (ECs). Among these, caffeine (CAF) and N, N-diethyl-meta-toluamide (DEET) are notable ECs frequently found in domestic sewage due to human activities. Despite extensive research on emerging contaminants, limited studies have focused on the seasonal variations, human health and ecological risks of CAF and DEET in urban groundwater, particularly in Indian cities.

View Article and Find Full Text PDF

Predicting the composition of solid waste at the county scale.

Waste Manag

December 2024

Arizona State University, Rob and Melani Walton Sustainability Solutions Service, 777 E. University, Tempe, AZ, 85287, USA. Electronic address:

The primary goals of this paper are to facilitate data-driven decision making in solid waste management (SWM) and to support the transition towards a circular economy, by providing estimates of the composition and quantity of waste. To that end, it introduces a novel two-phase strategy for predicting municipal solid waste (MSW). The first phase predicts the waste composition, the second phase predicts the total quantity, and the two predictions are combined to give a comprehensive waste estimate.

View Article and Find Full Text PDF

This paper introduces the Sandbar Detector plugin for Quantum Geographic Information System (QGIS), designed to streamline the detection and analysis of riverbed forms, previously hindered by time-consuming manual methods requiring extensive expertise in remote sensing and Geographic Information System (GIS). The Sandbar Detector plugin, developed in Python, leverages the Sentinel Water Mask (SWM), a reliable remote sensing water index, for precise differentiation between water and land. By integrating SWM with QGIS, the plugin utilises high-resolution data from Sentinel-2 satellites, offering a robust tool for environmental analysis.

View Article and Find Full Text PDF

Objective: To compare the cost-effectiveness of a newly introduced decentralized method with the existing centralized solid waste management (SWM) method in 2019 in Tirunelveli City, Tamil Nadu, India.

Materials And Methods: A cross-sectional study was undertaken to compare the costs for the two SWM methods using the bottom-up approach. We ascertained cost centers for the collection, transportation, and processing of solid waste for the two methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!