Intercellular communication is a cell-type and stimulus-dependent event driven not only by soluble factors but also by extracellular vesicles (EVs). EVs include vesicles of different size and origin that contain a myriad of molecules. Among them, small EVs (sEV; <200 nm) have been shown to modulate not just regional cell responses but also distant organ behavior. In cancer, distant organ modulation by sEVs has been associated to disease dissemination, which is one of the main concerns in melanoma. Description of broadly conserved alterations in sEV-contained molecules represents a strategy to identify key modifications in cellular communication as well as new disease biomarkers. Here, we characterize proteomes of cutaneous melanocyte and melanoma-derived sEVs to deepen on the landscape of normal and disease-related cell communication. Results reveal the presence of unique protein signatures for melanocytes and melanoma cells that reflect cellular transformation-related profound modifications. Melanocyte-derived sEVs are enriched in oxidative metabolism (e.g., aconitase 2, ACO2) or pigmentation (e.g., tyrosinase, TYR) related proteins while melanoma-derived sEVs reflect a generalized decrease in mature melanocytic markers (e.g., melanoma antigen recognized by T-cells 1, MART-1, also known as MLANA) and an increase in epithelial to mesenchymal transition (EMT)-related adhesion molecules such as tenascin C (TNC).

Download full-text PDF

Source
http://dx.doi.org/10.1111/pcmr.13158DOI Listing

Publication Analysis

Top Keywords

small extracellular
4
extracellular vesicle-based
4
vesicle-based human
4
human melanocyte
4
melanocyte melanoma
4
melanoma signature
4
signature intercellular
4
intercellular communication
4
communication cell-type
4
cell-type stimulus-dependent
4

Similar Publications

Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces.

View Article and Find Full Text PDF

Background: Tumor-derived small extracellular vesicles (sEVs) play an essential role in reprogramming the tumor microenvironment. Metabolic reprogramming is an essential prerequisite for M2 polarization of tumor-associated macrophages (TAMs). This M2 phenotype is closely related to the immune dysfunction of CD8 T cells and subsequent tumor progression.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Background: While disease-modifying treatments that reduce Aβ have been recently approved by the FDA, the identification of novel therapeutic targets and strategies that target underlying mechanisms to delay the AD development are still needed. Abnormal brain energy homeostasis and mitochondria dysfunction are observed early in AD. Therefore, the development of treatments to restore these defects could be beneficial.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mayo Clinic, Jacksonville, FL, USA.

Background: Extracellular vesicles (EVs) carry pathogenic molecules and play a role in the disease spread, including aggregated tau proteins. The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is responsible for the biogenesis of small EVs (exosomes), thus targeting critical ESCRT molecules can disrupt EV synthesis. We hypothesize that microglia-specific targeting of ESCRT-I molecule Tsg101 suppresses microglia-derived EV-mediated propagation of tau pathology, leading to amelioration of the disease phenotype of the tauopathy mouse model.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.

Background: Alzheimer's disease (AD) is a heterogenous disease with a strong heritability. Genetic studies are of irreplaceable value in elucidating the mechanisms that underly this disease. The classical genome-wide association studies (GWAS) rely on ever-increasing sample sizes and utilize clinical AD diagnosis to investigate genetic risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!