Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Efforts in cancer immunotherapy aim to counteract evasion mechanisms and stimulate the immune system to recognise and attack cancer cells effectively. Combination therapies that target multiple aspects of immune evasion are being investigated to enhance the overall efficacy of cancer immunotherapy. PD-1 (Programmed Cell Death Protein 1), CTLA-4 (Cytotoxic T-Lymphocyte Antigen 4), LAG-3 (Lymphocyte-Activation Gene 3), and TIM-3 (T Cell Immunoglobulin and Mucin Domain-Containing Protein3) are all immune checkpoint receptors that play crucial roles in regulating the immune response and maintaining self-tolerance often exploited by cancer cells to evade immune surveillance. Antibodies targeted against immune checkpoint inhibitors such as anti-PD-1 antibodies (e.g., pembrolizumab, nivolumab), anti-CTLA-4 antibodies (e.g., Ipilimumab), and experimental drugs targeting LAG-3 and TIM-3, aim to block these interactions and unleash the immune system's ability to recognise and destroy cancer cells. The US FDA has approved different categories of immune checkpoint inhibitors that have been utilised successfully in some patients with metastatic melanoma, renal cell carcinoma, head and neck cancers, and non-small lung cancer. Although several immune checkpoint inhibitor antibodies have been developed, they exhibited immune-related adverse effects, resulting in hypophysitis, diabetes, and neurological issues. These adverse effects of antibodies can be reduced by developing aptamer against the target. Aptamers offer several advantages over traditional antibodies, such as improved specificity, reduced immunogenicity, and flexible design for reduced adverse effects that specifically target and block protein-protein or receptor-ligand interactions involved in immune checkpoint pathways. The current study aims to review the function of particular immune checkpoint inhibitors along with developed aptamer-mediated antitumor cytotoxicity in cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12032-023-02267-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!