Intracerebral fate of organic and inorganic nanoparticles is dependent on microglial extracellular vesicle function.

Nat Nanotechnol

Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Published: March 2024

Nanoparticles (NPs) represent an important advance for delivering diagnostic and therapeutic agents across the blood-brain barrier. However, NP clearance is critical for safety and therapeutic applicability. Here we report on a study of the clearance of model organic and inorganic NPs from the brain. We find that microglial extracellular vesicles (EVs) play a crucial role in the clearance of inorganic and organic NPs from the brain. Inorganic NPs, unlike organic NPs, perturb the biogenesis of microglial EVs through the inhibition of ERK1/2 signalling. This increases the accumulation of inorganic NPs in microglia, hindering their elimination via the paravascular route. We also demonstrate that stimulating the release of microglial EVs by an ERK1/2 activator increased the paravascular glymphatic pathway-mediated brain clearance of inorganic NPs. These findings highlight the modulatory role of microglial EVs on the distinct patterns of the clearance of organic and inorganic NPs from the brain and provide a strategy for modulating the intracerebral fate of NPs.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-023-01551-8DOI Listing

Publication Analysis

Top Keywords

inorganic nps
20
organic inorganic
12
nps brain
12
microglial evs
12
nps
9
intracerebral fate
8
microglial extracellular
8
clearance inorganic
8
organic nps
8
inorganic
7

Similar Publications

Integrating electrospun aligned fiber scaffolds with bovine serum albumin-basic fibroblast growth factor nanoparticles to promote tendon regeneration.

J Nanobiotechnology

December 2024

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.

Background: Electrospun nanofiber scaffolds have been widely used in tissue engineering because they can mimic extracellular matrix-like structures and offer advantages including high porosity, large specific surface area, and customizable structure. In this study, we prepared scaffolds composed of aligned and random electrospun polycaprolactone (PCL) nanofibers capable of delivering basic fibroblast growth factor (bFGF) in a sustained manner for repairing damaged tendons.

Results: Aligned and random PCL fiber scaffolds containing bFGF-loaded bovine serum albumin (BSA) nanoparticles (BSA-bFGF NPs, diameter 146 ± 32 nm) were fabricated, respectively.

View Article and Find Full Text PDF

X-ray-induced photodynamic therapy (X-PDT) represents a promising new method of cancer treatment. A novel type of nanoscintillator based on cerium fluoride (CeF) nanoparticles (NPs) modified with flavin mononucleotide (FMN) has been proposed. A method for synthesizing CeF-FMN NPs has been developed, enabling the production of colloidal, spherical NPs with an approximate diameter of 100 nm, low polydispersity, and a high fluorescence quantum yield of 0.

View Article and Find Full Text PDF

Traditional Chinese medicine-based drug delivery systems for anti-tumor therapies.

Chin J Nat Med

December 2024

Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine, Nanjing 210028, China. Electronic address:

The treatment of tumors continues to be significantly challenging. The presence of multiple modalities, including surgery, radiation, chemotherapy and immunotherapy, the therapeutic outcomes remain limited and are often associated with adverse effects and inconsistent efficacy across cancer types. Recent studies have highlighted the potential of active components from traditional Chinese medicine (TCM) for their anti-cancer properties, which are attributable to multi-targeted mechanisms and broad pharmacological actions.

View Article and Find Full Text PDF

In vivo, molecular imaging is prevalent for biology research and therapeutic practice. Among advanced imaging technologies, photoacoustic (PA) imaging and sensing is gaining interest around the globe due its exciting features like high resolution and good (~ few cm) penetration depth. PA imaging is a recent development in ultrasonic technology that generates acoustic waves by absorbing optical energy.

View Article and Find Full Text PDF

High-Performance InP Quantum-Dot Light-Emitting Diodes with a NiO Nanoparticle-Embedded Hybrid Emissive Layer.

ACS Appl Mater Interfaces

December 2024

Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and SOFT Foundry Institute, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

Quantum-dot (QD) light-emitting diodes (QLEDs) are garnering significant attention owing to their superb optoelectrical properties, but the overinjection of electrons compared to holes into the emissive layer (EML) is still a critical obstacle to be resolved. Current approaches, such as inserting a charge-balancing interlayer and mixing p-type organic additives into the EML, face issues of process complexity and poor miscibility. In this work, we demonstrate efficient InP QLEDs by simply embedding NiO nanoparticles (NPs) into the EML which forms a homogeneous QD-metal oxide hybrid EML.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!