Doxycycline hydrochloride inhibits the progress of malignant rhabdoid tumor of kidney by targeting MMP17 and MMP1 through PI3K-Akt signaling pathway.

Eur J Pharmacol

Children's Urogenital Development and Tissue Engineering Chongqing Key Laboratory, Chongqing, 400014, China; Chongqing Key Laboratory of Pediatrics, Children's Hospital Affiliated to Chongqing Medical University, Chongqing, 400014, China; Department of Urology, Children's Hospital Affiliated to Chongqing Medical University, Chongqing, 400014, China; Key Laboratory of Children's Developmental Diseases Research, Affiliated Children's Hospital of Chongqing Medical University, Ministry of Education, Chongqing, 400014, China; National International Science and Technology Cooperation Base for Major Childhood Developmental Diseases, Children 's Hospital Affiliated to Chongqing Medical University, Chongqing, 400014, China; National Clinical Research Center for Child Health and Diseases, Children 's Hospital Affiliated to Chongqing Medical University, Chongqing, 400014, China. Electronic address:

Published: February 2024

Objective: To identify therapeutic targets for malignant rhabdoid tumors of kidney (MRTK) and to investigate the effects and underlying mechanism of doxycycline hydrochloride on these tumors.

Methods: Gene expression and clinical data of MRTK were retrieved from the TARGET database. Differentially expressed genes (DEGs) and prognostic-related genes (PRGs) were selected through a combination of statistical analyses. The functional roles of MMP17 and MMP1 were elucidated through RNA overexpression and intervention experiments. Furthermore, in vitro and in vivo studies provided evidence for the inhibitory effect of doxycycline hydrochloride on MRTK. Additionally, transcriptome sequencing was employed to investigate the underlying molecular mechanisms.

Results: 3507 DEGs and 690 PRGs in MRTK were identified. Among these, we focused on 41 highly expressed genes associated with poor prognosis and revealed their involvement in extracellular matrix regulatory pathways. Notably, MMP17 and MMP1 stood out as particularly influential genes. When these genes were knocked out, a significant inhibition of proliferation, invasion and migration was observed in G401 cells. Furthermore, our study explored the impact of the matrix metalloproteinase inhibitor, doxycycline hydrochloride, on the malignant progression of G401 both in vitro and in vivo. Combined with sequencing data, the results indicated that doxycycline hydrochloride effectively inhibited MRTK progression, due to its ability to suppress the expression of MMP17 and MMP1 through the PI3K-Akt signaling pathway.

Conclusion: Doxycycline hydrochloride inhibits the expression of MMP17 and MMP1 through the PI3K-Akt signaling pathway, thereby inhibiting the malignant progression of MRTK in vivo and in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2023.176291DOI Listing

Publication Analysis

Top Keywords

doxycycline hydrochloride
24
mmp17 mmp1
20
mmp1 pi3k-akt
12
pi3k-akt signaling
12
hydrochloride inhibits
8
malignant rhabdoid
8
signaling pathway
8
expressed genes
8
vitro vivo
8
malignant progression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!