The ability of alternative splicing mechanisms to control gene expression is increasingly being recognized as relevant for adipose tissue function. The expression of SF3B1, a key component of the SF3B complex directly involved in spliceosome formation, was previously reported to be significantly induced in brown adipose tissue under cold-induced thermogenic activation. Here, we identify that noradrenergic cAMP-mediated thermogenic stimulation increases SF3B1 expression in brown and beige adipocytes. We further show that pladienolide-B, a drug that binds SF3B1 to inhibit pre-mRNA splicing by targeting the SF3B complex, down-regulates key components of the thermogenic machinery (e.g., UCP1 gene expression), differentially alters the expression of alternative splicing-regulated transcripts encoding molecular actors involved in the oxidative metabolism of brown adipocytes (e.g., peroxisome proliferator-activated receptor-gamma co-activator-alpha [PGC-1α] and cytochrome oxidase subunit 7a genes), and impairs the respiratory activity of brown adipocytes. Similar alterations were found in brown adipocytes with siRNA-mediated knockdown of SF3B1 protein levels. Our findings collectively indicate that SF3B1 is a key factor in the appropriate thermogenic activation of differentiated brown adipocytes. This work exemplifies the importance of splicing processes in adaptive thermogenesis and suggests that pharmacological tools, such as pladienolide-B, may be used to modulate brown adipocyte thermogenic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2023.116014DOI Listing

Publication Analysis

Top Keywords

brown adipocytes
16
thermogenic activation
12
brown
8
brown adipocyte
8
adipocyte thermogenic
8
gene expression
8
adipose tissue
8
sf3b1 key
8
sf3b complex
8
sf3b1
6

Similar Publications

Metabolic dysfunction in mice with adipocyte specific ablation of the adenosine A2A receptor.

J Biol Chem

January 2025

Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New Science Building, 435 E 30(th) Street, New York, NY, 10016, USA. Electronic address:

It has been well established that adenosine plays a key role in the control of inflammation through G protein coupled receptors and recently shown that it can regulate thermogenesis. Here we investigated the specific requirements of the adenosine A2A receptor (A2AR) in mature adipocytes for thermogenic functionality and metabolic homeostasis. We generated fat tissue specific adenosine A2A receptor knock-out mice to assess the influence of signaling through this receptor on brown and beige fat functionality, obesity, insulin sensitivity, inflammation and liver function.

View Article and Find Full Text PDF

Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity.

Curr Obes Rep

January 2025

Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.

Purpose Of Review: Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles.

Recent Findings: Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases.

View Article and Find Full Text PDF

Objectives: To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX.

Methods: The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay.

View Article and Find Full Text PDF

4-hydroxybenzoic acid induces browning of white adipose tissue through the AMPK-DRP1 pathway in HFD-induced obese mice.

Phytomedicine

December 2024

Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea. Electronic address:

Background: Beige adipocytes have physiological functions similar to brown adipocytes, which are available to increase energy expenditure through uncoupling protein 1 (UCP1) within mitochondria. Recently, many studies showed white adipocytes can undergo remodeling into beige adipocytes, called "browning", by increasing fusion and fission events referred to as mitochondrial dynamics.

Purpose: In this study, we aimed to investigate the browning effects of 4-hydroxybenzoic acid (4-HA), one of the major compounds of black raspberries.

View Article and Find Full Text PDF

Compound K promotes thermogenic signature and mitochondrial biogenesis via the UCP1-SIRT3-PGC1α signaling pathway.

Biomed Pharmacother

January 2025

Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do 54907, South Korea. Electronic address:

Compound K (CK), an active ingredient in ginseng, has anti-cancer, anti-inflammatory, and antioxidant properties. However, its effects on thermogenesis and mitochondrial dynamics in white adipose tissue (WAT) adipocytes are not well understood. This study explores CK's impact on thermogenesis and mitochondrial metabolism in cold-exposed mice and mouse stromal vascular fraction (SVF) cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!