The intestinal microbiota exerts a sex-specific influence on neuroinflammation in a Parkinson's disease mouse model.

Neurochem Int

Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China. Electronic address:

Published: February 2024

Parkinson's disease (PD) is a neurodegenerative disorder characterised by chronic and progressive symptoms; it is more prevalent in men than in women. The sex-specific influence of the intestinal microbiota has been associated with some neurodegenerative diseases, but the relationship with PD is currently unclear. In this study, we treated mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to establish a PD mouse model, and we utilised an antibiotic cocktail (Abx) to deplete the intestinal microbiota to evaluate the influence of the intestinal microbiota on male and female PD mice. MPTP treatment obviously caused bradykinesia and low mobility in female and male mice. Meanwhile, Abx treatment exerted a greater effect on male mice than female mice. Western blotting and immunofluorescence revealed that male mice treated with MPTP had higher expression of α-synuclein and proteins related to neuroinflammation and intestinal inflammation based on activation of glial cells and the TLR4-MyD88 signalling pathway. The sex-specific differences could be due to the different composition of the intestinal microbiota. Specifically, female mice had significantly higher abundance of Allobaculum, Turicibacter and Ruminococcus than male mice. Moreover, the abundance of the probiotic genus Bifidobacterium showed opposite trends in male and female mice. Our results indicate that the intestinal microbiota has an important effect on PD mice, especially male mice, by influencing neuroinflammation through the microbiota-gut-brain axis. In the future, there should be a focus on providing more reliable evidence for the pathogenesis and precise treatment of PD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2023.105661DOI Listing

Publication Analysis

Top Keywords

intestinal microbiota
24
male mice
20
female mice
16
mice
11
sex-specific influence
8
parkinson's disease
8
mouse model
8
influence intestinal
8
male female
8
intestinal
7

Similar Publications

Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.

Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.

View Article and Find Full Text PDF

Characterizing the dynamics of microbial community succession in the infant gut microbiome is crucial for understanding child health and development, but no normative model currently exists. Here, we estimate child age using gut microbial taxonomic relative abundances from metagenomes, with high temporal resolution (±3 months) for the first 1.5 years of life.

View Article and Find Full Text PDF

The gut microbiome significantly impacts human health, yet cultivation challenges hinder its exploration. Here, we combine deep whole-metagenome sequencing with culturomics to selectively enrich for taxa and functional capabilities of interest. Using a modified commercial base medium, 50 growth modifications were evaluated, spanning antibiotics, physico-chemical conditions, and bioactive compounds.

View Article and Find Full Text PDF

Selective utilization of medicinal polysaccharides by human gut Bacteroides and Parabacteroides species.

Nat Commun

January 2025

Cancer Center, Faculty of Health Sciences, Ministry of Education (MOE) Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau, SAR, China.

Human gut Bacteroides and Parabacteroides species play crucial roles in human health and are known for their capacity to utilize diverse polysaccharides. Understanding how these bacteria utilize medicinal polysaccharides is foundational for developing polysaccharides-based prebiotics and drugs. Here, we systematically mapped the utilization profiles of 20 different medicinal polysaccharides by 28 human gut Bacteroides and Parabacteroides species.

View Article and Find Full Text PDF

Kelp deforestation by sea urchin grazing is a widespread phenomenon globally, with vast consequences for coastal ecosystems. The ability of sea urchins to survive on a kelp diet of poor nutritional quality is not well understood and bacterial communities in the sea urchin intestine may play an important role in digestion. A no-choice feeding experiment was conducted with the sea urchin Strongylocentrotus droebachiensis, offering three different seaweeds as diet, including the kelp Saccharina latissima.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!