Background: Ligustilide (Lig) is the main active ingredient of Umbelliferae Angelicae Sinensis Radix (Chinese Angelica) and Chuanxiong Rhizoma (Sichuan lovase rhizome). Lig possesses various pharmacological properties and could treat obesity by regulating energy metabolism. However, the impact and regulatory mechanism of Lig on alcoholic hepatic steatosis remains unclear.
Purpose: This study aimed to explore the therapeutic effect of Lig on alcoholic hepatic steatosis and its related pharmacological mechanism.
Results: With chronic and binge ethanol feeding, liver tissue damage and lipid accumulation in mice suffering alcoholic hepatic steatosis were significantly improved after Lig treatment. Lig effectively regulated the expression levels of lipid metabolism-related proteins in alcoholic hepatic steatosis. In addition, Lig reduced RXFP1 expression, inhibited the activation of NLRP3 inflammasome, and blocked NET formation. Lig reduced the infiltration of immune cells to the liver and the further prevented the occurrence of alcohol-stimulated inflammatory response in liver. Lig significantly regulated lipid accumulation in alcohol exposed AML12 cells via modulating PPARα and SREBP1. In MPMs, Lig decreased the expression of RXFP1, inhibited the activation of NLRP3 in macrophages stimulated by LPS/ATP, and slowed down the occurrence of inflammatory response.
Conclusion: Lig sustained lipid metabolism homeostasis in alcoholic hepatic steatosis, through inhibiting the activation of NLRP3 inflammasomes and the formation of NETs, especially targeting RXFP1 in macrophages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2023.111460 | DOI Listing |
Methods Protoc
December 2024
Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
Both the prevalence and mortality of liver cancers continue to rise. Early surgical interventions, including liver transplantation or resection, remain the only curative treatment. Nerves in the periphery influence tumor growth within visceral organs.
View Article and Find Full Text PDFMetabolites
December 2024
Exercise Biological Research Center, China Institute of Sport Science, Beijing 100061, China.
Background: Insulin resistance (IR) is central to the progression of non-alcoholic fatty liver disease (MAFLD). While aerobic exercise reduces hepatic fat and enhances insulin sensitivity, the specific mechanisms-particularly those involving exosomal pathways-are not fully elucidated.
Method: Exosomes were isolated from 15 MAFLD patients' plasma following the final session of a 12-week aerobic exercise intervention.
Front Nutr
December 2024
Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
High sugar, high-fat diets and unhealthy lifestyles have led to an epidemic of obesity and obesity-related metabolic diseases, seriously placing a huge burden on socio-economic development. A deeper understanding and elucidation of the specific molecular biological mechanisms underlying the onset and development of obesity has become a key to the treatment of metabolic diseases. Recent studies have shown that the changes of bile acid composition are closely linked to the development of metabolic diseases.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2024
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
Objectives: To investigate the therapeutic effect of Exocarpium Citri Grandis formula granules (ECGFG) on fatty liver disease (FLD) in zebrafish and explore the underlying mechanism.
Methods: Nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD) models were established in zebrafish larvae at 3 days post fertilization (dpf), in which the treatment efficacy of 16, 32, or 64 μg/mL ECGFG was evaluated by examining zebrafish survival and liver pathologies and using whole-fish oil red O staining and RT-qPCR. The therapeutic mechanism of ECGFG for FLD was investigated using Prussian blue staining, DCFH-DA probe, MDA content detection, RT-qPCR assay and immunohistochemical staining for CAV1.
Int Immunopharmacol
December 2024
School of Pharmacy, Nantong University, Nantong, Jiangsu, China. Electronic address:
Non-alcoholic steatohepatitis (NASH) is the most common cause of chronic liver diseases with its pathophysiological mechanism poorly understood. In this work, serological, histological, molecular biological, biochemical, and immunological methods were applied to explore the pathological significance and action of zinc finger protein 281 (ZFP281 in mouse, ZNF281 in human) and targeted strategies. We reported that ZFP281/ZNF281 abundance in hepatocytes was positively correlated with the progression of NASH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!