Rapid laser fabrication of indium tin oxide and polymer-derived ceramic composite thin films for high-temperature sensors.

J Colloid Interface Sci

Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China. Electronic address:

Published: March 2024

AI Article Synopsis

  • Thin-film sensors are crucial for monitoring components in high-temperature conditions, but traditional methods can be complex and time-consuming.
  • A new fabrication technique combining direct ink writing and laser scanning (DIW-LS) uses a specially developed ink (ITO/PP) to create high-temperature thin films more efficiently.
  • The resulting ITO/PDC thin film demonstrates impressive stability at extreme temperatures (up to 1250 °C) and is capable of measuring significant heat flux densities, showing potential for practical applications in harsh environments.

Article Abstract

Thin-film sensors are essential for real-time monitoring of components in high-temperature environments. Traditional fabrication methods often involve complicated fabrication steps or require prolonged high-temperature annealing, limiting their practical applicability. Here, we present an approach using direct ink writing and laser scanning (DIW-LS) to fabricate high-temperature functional thin films. An indium tin oxide (ITO)/preceramic polymer (PP) ink suitable for DIW was developed. Under LS, the ITO/PP thin film shrank in volume. Meanwhile, the rapid pyrolysis of PP into amorphous precursor-derived ceramic (PDC) facilitated the faster sintering of ITO nanoparticles and improved the densification of the thin film. This process realized the formation of a conductive network of interconnected ITO nanoparticles. The results show that the ITO/PDC thin film exhibits excellent stability, with a drift rate of 4.7 % at 1000 °C for 25 h, and withstands temperatures up to 1250 °C in the ambient atmosphere. It is also sensitive to strain, with a maximum gauge factor of -6.0. As a proof of concept, we have used DIW-LS technology to fabricate a thin-film heat flux sensor on the surface of the turbine blade, capable of measuring heat flux densities over 1 MW/m. This DIW-LS process provides a viable approach for the integrated, rapid, and flexible fabrication of thin film sensors for harsh environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.12.119DOI Listing

Publication Analysis

Top Keywords

thin film
16
indium tin
8
tin oxide
8
thin films
8
ito nanoparticles
8
heat flux
8
thin
6
rapid laser
4
fabrication
4
laser fabrication
4

Similar Publications

Microprofiling real time nitric oxide flux for field studies using a stratified nanohybrid carbon-metal electrode.

Anal Methods

November 2017

Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.

Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.

View Article and Find Full Text PDF

SRT3025-loaded cell membrane hybrid liposomes (3025@ML) enhanced anti-tumor activity of Oxaliplatin via inhibiting pyruvate kinase M2 and fatty acid synthase.

Lipids Health Dis

January 2025

Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China.

Background: Bladder cancer is one of the most common malignancies of the urinary system. Despite significant advances in diagnosis and treatment, the compromised therapeutic effect of chemotherapeutic agents, such as Oxaliplatin (OXA), remains a major clinical challenge. Thus, a combination therapy is required to enhance the OXA's therapeutic effectiveness and improve patient outcomes.

View Article and Find Full Text PDF

The transdermal route is one of the effective routes for delivering drugs. It also overcomes many limitations associated with oral delivery. One of the limitations of this route is the drug's poor skin permeability-stratum corneum, the skin's outermost layer that also acts as a barrier for the drug to penetrate.

View Article and Find Full Text PDF

There are several studies that announce the inhibitory behavior of this sort of substance to strengthen the shield of metals, which is one of the positive benefits of green inhibitors. In the current investigation, Araucaria heterophylla studied as a green corrosion inhibitor to avert the mild steel during the acidic cleaning. The examination of this plant's ability to control corrosion at different concentrations in the acidic solution used certain expert measures.

View Article and Find Full Text PDF

Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points.

Nat Commun

January 2025

Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.

Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!