In contemporary times, electromagnetic radiation poses a significant threat to both human health and the normal functioning of electronic devices. Developing composites as adsorption materials possess exceptional electromagnetic wave absorption performances can efficient address this critical issue. Herein, hollow core-shell NiCoO@polypyrrole nanofibers/reduced graphene oxide (NiCo-HFPR) composites are fabricated by the combination of electrostatic spinning, air calcination, in-situ polymerization, freeze-drying and hydrazine vapor reduction. As anticipated, NiCo-HFPR-0.2 exhibits noteworthy properties, with the minimum reflection loss (RL) of -61.20 dB at 14.26 GHz and 1.56 mm, as well as the effective absorption bandwidth (EAB) of 4.90 GHz at 1.57 mm. Additionally, the simulation procedure is employed to determine the radar cross-section (RCS) attenuation. In comparison to a singular perfect electrically conductive (PEC) layer, the PEC layer coated with NiCo-HFPR-0.2 consistently yields an RCS value below -10 dB m within the range of -60° < θ < 60°. The RCS attenuation value of the NiCo-HFPR-0.2 coating achieves an outstanding 31.0 dB m at θ = 0°, strongly affirming the ability to effectively attenuate electromagnetic wave in real-world applications. The employed experimental methodology, the meticulously crafted composite, and the simulation outcomes presented in this study bear great promise for the progressive advancement of both theoretical investigations and practical applications within the domain of electromagnetic wave absorption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.12.132DOI Listing

Publication Analysis

Top Keywords

hollow core-shell
8
core-shell nicoo@polypyrrole
8
nicoo@polypyrrole nanofibers/reduced
8
nanofibers/reduced graphene
8
graphene oxide
8
absorption performances
8
pec layer
8
fabrication hollow
4
oxide ternary
4
ternary composites
4

Similar Publications

As the demand for clean water intensifies, developing effective methods for removing pollutants from contaminated sources becomes increasingly crucial. This work establishes a method for additive manufacturing of functional polymer sorbents with hollow porous features, designed to enhance interactions with organic micropollutants. Specifically, core-shell filaments are used as the starting materials, which contain polypropylene (PP) as the shell and poly(acrylonitrile-co-butadiene-co-styrene) as the core, to fabricate 3-dimensional (3D) structures on-demand via material extrusion.

View Article and Find Full Text PDF

The conversion of carbon dioxide (CO) into carbon-neutral fuels using solar energy is crucial for achieving energy sustainability. However, the high carrier charge recombination and low CO adsorption capacity of the photocatalysts present significant challenges. In this paper, a TAPB-COF@ZnInS-30 (TAPB-COFZ-30) heterojunction photocatalyst was constructed by growth of ZnInS (ZIS) on a hollow covalent organic framework (HCOF) with a hollow core-shell structure for CO to CO conversion.

View Article and Find Full Text PDF

Highly efficient enzymatic enrichment of n-3 polyunsaturated fatty acid glycerides via interfacial biocatalysis in Pickering emulsions.

Food Chem

December 2024

Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; Xinjiang Uygur Autonomous Region Saihu Fishery Science and Technology Development Company Limited, Bortala Mongol Autonomous Prefecture, 833500, China. Electronic address:

Article Synopsis
  • A novel Pickering interfacial biocatalysis (PIB) system was created for the enzymatic hydrolysis of algae and fish oils to enrich n-3 PUFAs glycerides.
  • Lipase AY 400SD was successfully immobilized on hollow core-shell silica nanoparticles, enhancing its effectiveness as an emulsifier in the water-in-oil Pickering emulsion.
  • The PIB system increased the n-3 PUFAs content by 9.17% to 23.09% and achieved over 90% recovery of n-3 PUFAs, proving to be stable and recyclable for future use.
View Article and Find Full Text PDF

Restructuring Biologically Assembled Binding Protein-Biopolymer Conjugates toward Advanced Materials.

ACS Appl Mater Interfaces

December 2024

Centre for Cell Factories and Biopolymers, Griffith Institute for Biomedicine and Glycomics, Griffith University, Nathan, QLD 4111, Australia.

Bacterial cell factories have been successfully engineered to efficiently assemble spherical polyhydroxybutyrate inclusions coated with functional proteins of interest. In these submicrometer-sized core-shell assemblies, proteins are bioconjugated to the polymer core, enabling bioengineering for uses as bioseparation resins, enzyme carriers, diagnostic reagents, and particulate vaccines. Here, we explore whether these functional protein-polymer assemblies could be restructured via dissolution and subsequent precipitation while retaining the functionality of the conjugated protein.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created a new type of nanobox using nitrogen-doped carbon nanotubes to wrap around a nickel sulfide (NiS) core, enhancing its performance for sodium storage.
  • The design features a hollow interior and a protective carbon layer, leading to improved reversible capacities and better stability over time, even when used at high current rates.
  • Computational studies suggest that this unique structure significantly speeds up the charge transfer process, enhancing overall efficiency.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!