Mapping particulate organic carbon in lakes across China using OLCI/Sentinel-3 imagery.

Water Res

Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China. Electronic address:

Published: February 2024

Remote sensing monitoring of particulate organic carbon (POC) concentration is essential for understanding phytoplankton productivity, carbon storage, and water quality in global lakes. Some algorithms have been proposed, but only for regional eutrophic lakes. Based on in-situ data (N = 1269) in 49 lakes across China, we developed a blended POC algorithm by distinguishing Type-I and Type-II waters. Compared to Type-I, Type-II waters had higher reflectance peak around 560 nm (>0.0125 sr) and mean POC (4.65 ± 4.11 vs. 2.66 ± 3.37 mg/L). Furthermore, because POC was highly related to algal production (r = 0.85), a three-band index (R = 0.65) and the phytoplankton fluorescence peak height (R = 0.63) were adopted to estimate POC in Type-I and Type-II waters, respectively. The novel algorithm got a mean absolute percent difference (MAPD) of 35.93 % and outperformed three state-of-the-art formulas with MAPD values of 40.56-76.42 %. Then, the novel algorithm was applied to OLCI/Sentinel-3 imagery, and we first obtained a national map of POC in 450 Chinese lakes (> 20 km), which presented an apparent spatial pattern of "low in the west and high in the east". In brief, water classification should be considered when remotely monitoring lake POC concentration over a large area. Moreover, a process-oriented method is required when calculating water column POC storage from satellite-derived POC concentrations in type-II waters. Our results contribute substantially to advancing the dynamic observation of the lake carbon cycle using satellite data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.121034DOI Listing

Publication Analysis

Top Keywords

type-ii waters
16
type-i type-ii
12
poc
9
particulate organic
8
organic carbon
8
lakes china
8
olci/sentinel-3 imagery
8
poc concentration
8
novel algorithm
8
lakes
5

Similar Publications

CS bonds mediated rapid charge transfer in hm-CN/CdS heterostructure for efficient photocatalytic CO reduction.

J Colloid Interface Sci

January 2025

School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, PR China. Electronic address:

The quest for stable and high-performance photocatalysts is pivotal in advancing the field of photocatalytic CO reduction. Traditional single-component semiconductors are often impeded by their inability to concurrently achieve a broad light absorption spectrum, efficient separation of photogenerated charge carriers, and enduring stability, thereby constraining their photocatalytic efficacy. In this study, we introduce an innovative hm-CN/CdS heterojunction that broadens the light absorption spectrum and significantly enhances the separation efficiency of photogenerated charge carriers.

View Article and Find Full Text PDF

DNA gyrase is a bacterial type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology and an archetypical target of antibiotics. The widely used quinolone class of drugs use a water-metal ion bridge in interacting with the GyrA subunit of DNA gyrase. Zoliflodacin sits in the same pocket as quinolones but interacts with the GyrB subunit and also stabilizes lethal double-stranded DNA breaks.

View Article and Find Full Text PDF

Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.

View Article and Find Full Text PDF

Herein, we propose a new GaN/MoSiP van der Waals (vdWs) heterostructure constructed by vertically stacking GaN and MoSiP monolayers. Its electronic, optical, and photocatalytic properties are explored DFT++BSE calculations. The calculated binding energy and phonon spectrum demonstrated the material's high stabilities.

View Article and Find Full Text PDF

Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!