A comprehensive analytical approach for targeted and non-targeted discovery screening of per- and polyfluoroalkyl substances (PFAS) was developed and applied to model complex environmental biotic samples. Samples were extracted by formic acid-acetonitrile solution and cleaned up and fractionated by SPE (WAX). Target PFAS quantification was performed by ultra-high performance liquid chromatography interfaced with a triple quadrupole mass spectrometer (UPLC-QqQ-MS/MS). Non-targeted analysis (NTA) PFAS screening was performed with UPLC coupled with a quadrupole-Exactive orbitrap high resolution mass spectrometer (UPLC-Q-Exactive-HRMS). An iterative exclusion (IE) approach was applied to data acquisition for NTA suspect screening to increase the potential for unknown PFAS discovery with MS/MS. A complex workflow in Compound Discoverer was set up to automate data processing of the PFAS suspects search. New mass lists and MS/MS databases, which included a large number of PFAS, were set up and introduced into the search for high-throughput structure identification using HRMS techniques. The integrated targeted-NTA method successfully analyzed for legacy and alternative PFAS in model environmental biota samples, namely polar bear liver and bird egg samples. Targeted analysis provided unequivocal identification of well known/established PFAS (mainly perfluoroalkyl acids) with quantification at very low levels. The NTA suspect screening was able to determine a broader range of PFAS. The data analysis method offered high-confidence annotations for PFAS despite lacking available authentic standards. Overall, the analytical coverage of PFAS was greater and elucidated other PFAS present in these model apex predators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2023.464584 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!