Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The multi-sublattice magnetism and electronic structure in double-double perovskite compound CaMnCrSbOis explored using density functional theory. The bulk magnetization and neutron diffraction suggest a ferrimagnetic order (TC∼49 K) between between Mnand Crspins. Due to the non-equivalent Mn atoms (labelled as Mn(1) and Mn(2) which have tetrahedral and planar oxygen coordinations, respectively) and the Cr atom in the centre of distorted oxygen octahedron in the unit cell, the exchange interactions are more complex than that expected from a two sublattice magnetic system. The separations between the on-site energies of the-orbitals of Mn(1), Mn(2) and Cr obtained from Wannier function analysis are in agreement with their expected crystal field splitting. While the DOS obtained from non spin-polarized calculations show a metallic character, starting from Hubbard = 0 eV the spin-polarized electronic structure calculations yield a ferrimagnetic insulating ground state. The band gap increases withUeff( - ), thereby showing a Mott-Hubbard nature of the system. The inclusion of anti-site disorder in the calculations show decrease in band-gap and also reduction in the total magnetic moment. Due to the ∼90superexchange, nearest neighbour exchange constants obtained from DFT are an order of magnitude smaller than those reported for various magnetic perovskite and double-perovskite compounds. The Mn(1)-O-Mn(2) (out of plane and in-plane), Mn(1)-O-Cr and Mn(2)-O-Cr superexchange interactions are found to be anti-ferromagnetic, while the Cr-O-O-Cr super-superexchange is found to be ferromagnetic. The Mn(2)-O-Cr superexchange is weaker than the Mn(1)-O-Cr super-exchange, thus effectively resulting in ferrimagnetism. From a simple 3-site Hubbard model, we derived expressions for the antiferromagnetic superexchange strengthJAFMand also for the weaker ferromagneticJFM. The relative strengths ofJAFMfor the various superexchange interactions are in agreement with those obtained from DFT. The expression for Cr-O-O-Cr super-superexchange strength (J~SS), which has been derived considering a 4-site Hubbard model, predicts a ferromagnetic exchange in agreement with DFT. Finally, our mean field calculations reveal that assuming a set of four magnetic sub-lattices for Mnspins and a single magnetic sublattice for Crspins yields a much improved, while a simple two magnetic sublattice model yields a much higher.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ad19a1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!