Biomolecular simulations have become an essential tool in contemporary drug discovery, and molecular mechanics force fields (FFs) constitute its cornerstone. Developing a high quality and broad coverage general FF is a significant undertaking that requires substantial expert knowledge and computing resources, which is beyond the scope of general practitioners. Existing FFs originate from only a limited number of groups and organizations, and they either suffer from limited numbers of training sets, lower than desired quality because of oversimplified representations, or are costly for the molecular modeling community to access. To address these issues, in this work, we developed an AMBER-consistent small molecule FF with extensive chemical space coverage, and we provide Open Access parameters for the entire modeling community. To validate our FF, we carried out benchmarks of quantum mechanics (QM)/molecular mechanics conformer comparison and free energy perturbation calculations on several benchmark data sets. Our FF achieves a higher level of performance at reproducing QM energies and geometries than two popular open-source FFs, OpenFF2 and GAFF2. In relative binding free energy calculations for 31 protein-ligand data sets, comprising 1079 pairs of ligands, the new FF achieves an overall root-mean-square error of 1.19 kcal/mol for ΔΔ and 0.92 kcal/mol for Δ on a subset of 463 ligands without bespoke fitting to the data sets. The results are on par with those of the leading commercial series of OPLS FFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.3c00920 | DOI Listing |
J Am Chem Soc
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Kowloon 999077, China.
Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the antifreeze protein (TmAFP).
View Article and Find Full Text PDFMol Divers
January 2025
School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
Cancer, a leading global cause of death, presents considerable treatment challenges due to resistance to conventional therapies like chemotherapy and radiotherapy. Cyclin-dependent kinase 11 (CDK11), which plays a pivotal role in cell cycle regulation and transcription, is overexpressed in various cancers and is linked to poor prognosis. This study focused on identifying potential inhibitors of CDK11 using computational drug discovery methods.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Post Graduate Program in Medicine-Biophotonics, Nove de Julho University / UNINOVE, São Paulo, Brazil.
This brief report aimed to investigate the optical absorbance spectra of normal, dysplastic, and malignant epithelial cell lines under normal and nutritional stress conditions. HaCAT (keratinocyte), DOK (oral dysplastic), and oral squamous cell carcinoma (OSCC) cell lines (CA1, Luc4, SCC9) were evaluated regarding their optical absorbance after culture with 0-10% fetal bovine serum. Absorbance measurements indicated that HaCAT under serum starvation exhibited higher absorbance at blue (430 nm) and near-infrared (906 nm) wavelengths.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Biological Sciences, KAIST Institute for the BioCentury, Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
Renal ischemia/reperfusion injury (IRI) is a common form of acute kidney injury. The basic mechanism underlying renal IRI is acute inflammation, where oxidative stress plays an important role. Although bilirubin exhibits potent reactive oxygen species (ROS)-scavenging properties, its clinical application is hindered by problems associated with solubility, stability, and toxicity.
View Article and Find Full Text PDFSmall
January 2025
College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
The transition metal single atoms (SAs)-based catalysts with M-N coordination environment have shown excellent performance in electrocatalytic reduction of CO, and they have received extensive attention in recent years. However, the presence of SAs makes it very difficult to efficiently improve the coordination environment. In this paper, a method of direct high-temperature pyrolysis carbonization of ZIF-8 adsorbed with Ni and Fe ions is reported for the synthesis of Ni SAs and FeN nanoparticles (NPs) supported by the N-doped carbon (NC) hollow nanododecahedras (HNDs) with nanotubes (NTs) on the surface (Ni SAs/FeN NPs@NC-HNDs-NTs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!