Drug safety trials require substantial ECG labelling like, in thorough QT studies, measurements of the QT interval, whose prolongation is a biomarker of proarrhythmic risk. The traditional method of manually measuring the QT interval is time-consuming and error-prone. Studies have demonstrated the potential of deep learning (DL)-based methods to automate this task but expert validation of these computerized measurements remains of paramount importance, particularly for abnormal ECG recordings. In this paper, we propose a highly automated framework that combines such a DL-based QT estimator with human expertise. The framework consists of 3 key components: (1) automated QT measurement with uncertainty quantification (2) expert review of a few DL-based measurements, mostly those with high model uncertainty and (3) recalibration of the unreviewed measurements based on the expert-validated data. We assess its effectiveness on 3 drug safety trials and show that it can significantly reduce effort required for ECG labelling-in our experiments only 10% of the data were reviewed per trial-while maintaining high levels of QT accuracy. Our study thus demonstrates the possibility of productive human-machine collaboration in ECG analysis without any compromise on the reliability of subsequent clinical interpretations.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2023.3348329DOI Listing

Publication Analysis

Top Keywords

drug safety
12
safety trials
12
human-centered framework
4
framework efficient
4
efficient labelling
4
labelling ecgs
4
ecgs drug
4
trials drug
4
trials require
4
require substantial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!