Biofunctionalized conjugated polymers (i.e., carrying enzymes, antibodies, and nucleic acids) are of great interest for many biological applications, yet efficient biofunctionalization of conjugated polymers under biocompatible conditions is challenging. We report a facile strategy to make biofunctionalized conjugated polymers through thiol-ene chemistry with embedded latent disulfide functional groups. This is made possible through the design of a cyclic disulfide-containing dioxythiophene, which can be integrated into a series of conjugated polymers via acid-catalyzed chain-growth polymerization. The utility of such a biofunctionalized polymer with glucose oxidase has been examined in organic electrochemical transistors for the selective sensing of glucose. This work provides a venue for the creation of biofunctional organic semiconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c10321DOI Listing

Publication Analysis

Top Keywords

conjugated polymers
20
embedded latent
8
latent disulfide
8
biofunctionalized conjugated
8
conjugated
5
polymers
5
efficient modular
4
modular biofunctionalization
4
biofunctionalization thiophene-based
4
thiophene-based conjugated
4

Similar Publications

Breast cancer ranks as the second leading reason of cancer mortality among females globally, emphasizing the critical need for novel anticancer treatments. In current work, berberine-zinc oxide conjugated chitosan nanoparticles were synthesized and characterized using various characterization techniques. The cytotoxic effects of CS-ZnO-Ber NPs on MCF-7 cells were assessed using the MTT assay.

View Article and Find Full Text PDF

Engineering conductive covalent-organic frameworks enable highly sensitive and anti-interference molecularly imprinted electrochemical biosensor.

Biosens Bioelectron

January 2025

Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:

Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.

View Article and Find Full Text PDF

Non-viral vectors have gained recognition for their ability to enhance the safety of gene delivery processes. Among these, polyethyleneimine (PEI) stands out as the most widely utilized cationic polymer due to its accessibility. Traditional methods of modifying PEI, such as ligand conjugation, chemical derivatization, and cross-linking, are associated with intricate preparation procedures, limited transfection efficiency, and suboptimal biocompatibility.

View Article and Find Full Text PDF

Targeted Polymer-Peptide Conjugates for E-Selectin Blockade in Renal Injury.

Pharmaceutics

January 2025

Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.

Background/objectives: Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion molecules (CAMs, i.e.

View Article and Find Full Text PDF

Optically responsive materials are applied in sensing, actuators, and optical devices. One such class of material is dye-doped liquid crystal polymers that self-assemble into cholesteric mesophases that reflect visible light. We report here the synthesis and characterization of a family of linear and mildly crosslinked terpolymers prepared by the ROMP of norbornene-based monomers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!