Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Tissue engineering has emerged as an innovative approach to treat critical-size bone defects using biocompatible scaffolds, thus avoiding complex distraction surgeries or limited stock grafts. Continuous regeneration monitoring is essential in critical-size cases due to the frequent appearance of non-unions. This work evaluates the potential clinical use of gait analysis for the mechanical assessment of a tissue engineering regeneration as an alternative to the traditional and hardly conclusive manual or radiological follow-up.
Materials And Methods: The 15-mm metatarsal fragment of eight female merino sheep was surgically replaced by a bioceramic scaffold stabilized with an external fixator. Gait tests were performed weekly by making the sheep walk on an instrumented gangway. The evolution of different kinematic and dynamic parameters was analyzed for all the animal's limbs, as well as asymmetries between limbs. Finally, potential correlation in the recovery of the gait parameters was evaluated through the linear regression models.
Results: After surgery, the operated limb has an altered way of carrying body weight while walking. Its loading capacity was significantly reduced as the stance phases were shorter and less impulsive. The non-operated limbs compensated for this mobility deficit. All parameters were normalizing during the consolidation phase while the bone callus was simultaneously mineralizing. The results also showed high levels of asymmetry between the operated limb and its contralateral, which exceeded 150% when analyzing the impulse after surgery. Gait recovery significantly correlated between symmetrical limbs.
Conclusions: Gait analysis was presented as an effective, low-cost tool capable of mechanically predicting the regeneration of critical-size defects treated by tissue engineering, as comparing regeneration processes or novel scaffolds. Despite the progressive normalization as the callus mineralized, the bearing capacity reduction and the asymmetry of the operated limb were more significant than in other orthopedic alternatives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756556 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296510 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!