Dengue has received the status of an epidemic and endemic disease, with countless number of infections every year. Due to the unreliability of vaccines and non-specificity of drugs, it becomes necessary to find plant-based alternatives, with less harmful side effects. L., is the sole source of dye, Mehendi. The rich repertoire of phytochemicals makes it useful, medicinally. The main objectives of the study are to explore the anti-dengue properties of the phytochemicals from , and to shortlist potential candidates in curing the disease. Phytochemicals from the plant, and a set of drugs were screened and docked against NS1 protein, a less explored drug target, needed for maintenance of virus life cycle. Ligand screening and docking analysis concluded gallic acid, and chlorogenic acid to be good candidates, exhibiting high binding affinity and extensive interactions with the protein. From among the shortlisted drugs, only Vibegron showed effective binding affinity with NS1 protein with zero violations to the Lipinski's Rule of 5. Molecular dynamic simulations, executed for a time period of 100 nanoseconds, reveal the performance of a ligand within a solvated system. Chlorogenic and gallic acid, formed more stable and compact complexes with protein, with stable energy parameters and strong binding affinity. This was further validated with snapshots taken every 50 nanoseconds, showing no change in binding site between the ligand and protein, within the stipulated time frame. It was interesting to see that, a phenol (chlorogenic acid), served as a better drug candidate, against the NS1 protein.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2023.2298730 | DOI Listing |
Viruses
December 2024
Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina.
Understanding the evolutionary patterns and geographic spread of SARS-CoV-2 variants, particularly Omicron, is essential for effective public health responses. This study focused on the genomic analysis of the Omicron variant in Cordoba, Argentina from 2021 to 2022. Phylogenetic analysis revealed the dominant presence of BA.
View Article and Find Full Text PDFViruses
November 2024
Department of Biology, Faculty of Medicine, Aix-Marseille University, INSERM UA16, 13015 Marseille, France.
Most studies on the docking of ivermectin on the spike protein of SARS-CoV-2 concern the receptor binding domain (RBD) and, more precisely, the RBD interface recognized by the ACE2 receptor. The N-terminal domain (NTD), which controls the initial attachment of the virus to lipid raft gangliosides, has not received the attention it deserves. In this study, we combined molecular modeling and physicochemical approaches to analyze the mode of interaction of ivermectin with the interface of the NTD-facing lipid rafts of the host cell membrane.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Clinical Laboratory Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.
Echinococcosis is a zoonotic infectious disease that poses a significant threat to the health of individuals living in rural regions. While vaccination represents a potential strategy for disease prevention, there is currently no effective vaccine available for humans to prevent cystic echinococcosis (CE). This study aimed to design a novel multi-epitope vaccine (MEV) against Echinococcus granulosus for human use, employing immunoinformatics methods.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Central Hospital of Dalian University of Technology, Dalian 116021, China.
Non-small cell lung cancer (NSCLC) is the predominant form of lung cancer and poses a significant public health challenge. Early detection is crucial for improving patient outcomes, with serum biomarkers such as carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCCAg), and cytokeratin fragment 19 (CYFRA 21-1) playing a critical role in early screening and pathological classification of NSCLC. However, due to being mainly based on corresponding antibody binding reactions, existing detection technologies for these serum biomarkers have shortcomings such as complex operations, high false positive rates, and high costs.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid () and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid () have been synthesized. Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (H, C and Sn) spectroscopy and X-ray diffraction study. A solution state NMR analysis reveals a four-coordinated tributyltin(IV) complex in non-polar solvents, while an X-Ray crystallographic analysis confirms a five-coordinated trigonal-bipyramidal geometry around the tin atom due to the formation of 1D chains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!