A lab-scale gravity-driven bioreactor (GDB) was designed and constructed to evaluate the simultaneous treatment of black liquor and domestic wastewater. The GDB was operated with a mixture of black liquor and domestic wastewater at a ratio of 1:1 and maintained at an average organic loading rate of 1235 mg-COD/L-Day. The wastewater was fed to the primary sedimentation tank at a flow rate of approximately 12 mL/min and subsequently passed through serially connected anaerobic and aerobic chambers with the same flow rate. Each wastewater sample was allowed to undergo a hydraulic retention time of approximately 72 h, ensuring effective treatment. The GDB was actively operated for nine samples (W1-W9) at a weekly frequency. The entire process was conducted within the workstation's ambient temperature range of 30-35 °C to sustain microbial activity and treatment efficiency in an open environment. The performance of the GDB was evaluated in terms of various pollution indicators, including COD, BOD, lignin removal, TDS, TSS, EC, PO, SO, microbial load (CFU/mL and MPN index), total nitrogen, and color reduction. The results showed that the GDB achieved promising treatment efficiencies: 84.5% for COD, 71.80% for BOD, 82.8% for TDS, 100% for TSS, 74.71% for E.C., 67.25% for PO, 81% for SO, and 69.36% for TN. Additionally, about 80% reduction in lignin content and 57% color reduction were observed after the treatment. The GDB substantially reduced microbial load in CFU/mL (77.98%) and MPN (90%). This study marks the first to report on wastewater treatment from two different sources (black liquor and domestic wastewater) using a simple GDB design. Furthermore, it highlights the GDB's potential as a cost-effective, environmentally friendly, and efficient solution for wastewater treatment, with no need for supplementary chemical or physical agents and zero operational costs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-31576-4 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144008, Punjab, India.
Int J Biol Macromol
January 2025
Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Dongying 257335, China.
In this study, the response surface methodology was first utilized to optimize the enzyme treatment conditions as reaction pH, temperature, time and enzyme dosage of 9.5, 45 °C, 94.5 min and 100 U/L.
View Article and Find Full Text PDFFront Glob Womens Health
December 2024
College of Medicine and Health Sciences, Bahirdar University, Bahirdar, Ethiopia.
Background: Meconium is thick black-green fetal intestinal content starting from the early first trimester of gestation. Unfortunately, if it is released into the amniotic cavity due to any cause, it can be associated with neonatal mortality and morbidity.
Objective: To identify the factors associated with meconium-stained amniotic fluid among mothers undergoing emergency cesarean section in specialized hospitals cross-sectional study in south central Ethiopia from August 1, 2022, to 30, October 2022.
Bioresour Technol
December 2024
CIRTECH Institute, HUTECH University, Ho Chi Minh City, Viet Nam. Electronic address:
The state-of-the-art, simple and scalable methods for lignin micro-/nano-particles recovery from agricultural biomasses were evaluated in this review. Being non-wood biomasses, these materials can be easily fibrillated, supporting the usage of mild soda or organic solvent pretreatment. Different approaches in particle recovery were compared to conclude that the bottom-up approach facilitates smaller particles towards the nano-size range whereas mechanical treatment can act as a supporting method to increase uniformity and reduce particle sizes after bottom-up precipitation.
View Article and Find Full Text PDFSci Total Environ
December 2024
Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta (UNSa), Argentina; Facultad de Ciencias Naturales, UNSa, Argentina. Electronic address:
In this study, five strains previously isolated from black liquor (BL) and vinasse (V) were tested to assess the most promising regarding its capacity of biosurfactant production. For that, four factorial designs of two factors at two levels (2) were run for each strain. Selected factors were the production time and the composition media, while the surface tension reduction and optical density were the responses variables.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!