RNA-binding motif proteins (RBMs) have been widely implicated in the tumorigenesis of multiple human cancers but rarely investigated in glioblastoma (GBM). The expression level of RBM47 and its correlation with prognosis of GBM were examined using bioinformatics, quantitative reverse transcription PCR, and Western blot analysis. The colony formation assay and Cell Counting Kit-8 assay were used to determine the biological role of RBM47 in GBM. To measure invasiveness we used the wound healing assay and transwell assay. The regulatory relationship between RBM47 and the epithelial-to-mesenchymal transition (EMT) was examined by Western blot analysis and bioinformatic analysis. Through integrative analysis of clinical proteomic and genomic tumor datasets, we found that RBM47 is significantly upregulated in GBM mesenchymal subtype, and its high expression is correlated with poor prognosis. In biological experiments, we observed a significant inhibitory effect of RBM47 knockdown on colony formation and cell growth using GBM cell lines. Conversely, overexpression of RBM47 restored and accelerated these processes. Moreover, , wound healing assays demonstrated the role of RBM46 in promoting and cell migration and invasion. Mechanistically, RBM47 enhances invasive capacity through the activation of the EMT program. In RBM47-knockdown cells, the expression levels of Vimentin and CD44 were suppressed, and the level of E-cadherin was increased. Taken together our results demonstrate the tumor promoting characteristics of RBM46 and suggest that it could be used both as a therapeutic target and prognostically.

Download full-text PDF

Source
http://dx.doi.org/10.1089/gtmb.2023.0368DOI Listing

Publication Analysis

Top Keywords

rna-binding motif
8
rbm47
8
epithelial-to-mesenchymal transition
8
western blot
8
blot analysis
8
colony formation
8
wound healing
8
gbm
5
motif protein
4
protein rbm47
4

Similar Publications

Effects of neuropeptide F signaling on feeding, growth and development of Plutella xylostella (L.) larvae.

Int J Biol Macromol

December 2024

Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China. Electronic address:

The neuropeptide F (NPF) signaling, comprising NPF and neuropeptide F receptor (NPFR), role in regulating insect behaviors and physiological processes. We cloned the genes encoding NPF and NPFR from Plutella xylostella, a notorious pest of cruciferous crops. Notably, the NPF gene produced two splicing variants, Px-NPF1 and Px-NPF2, with distinct expression patterns.

View Article and Find Full Text PDF

Background: Pancreatic cancer (PC) is a lethal malignancy characterized by poor prognosis and high mortality. We found the highly expressed RNA-binding motif protein 47 (RBM47) in PC progression. The RBM47 expression was negatively correlated with natural killer (NK) cell infiltrate in PC.

View Article and Find Full Text PDF

Deciphering the interactome of Ataxin-2 and TDP-43 in iPSC-derived neurons for potential ALS targets.

PLoS One

December 2024

Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America.

Ataxin-2 is a protein containing a polyQ extension and intermediate length of polyQ extensions increases the risk of Amyotrophic Lateral Sclerosis (ALS). Down-regulation of Ataxin-2 has been shown to mitigate TDP-43 proteinopathy in ALS models. To identify alternative therapeutic targets that can mitigate TDP-43 toxicity, we examined the interaction between Ataxin-2 and TDP-43.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) plays important roles in brain development and neural function. Constitutive knockout of the splicing regulator RBM4 reduces BDNF expression in the developing brain and causes cerebellar hypoplasia, an autism-like feature. Here, we show that Rbm4 knockout induced intron 6 retention of Hsf1, leading to downregulation of HSF1 protein and its downstream target BDNF.

View Article and Find Full Text PDF

ZAP is an antiviral protein that binds to and depletes viral RNA, which is often distinguished from vertebrate host RNA by its elevated CpG content. Two ZAP cofactors, TRIM25 and KHNYN, have activities that are poorly understood. Here, we show that functional interactions between ZAP, TRIM25 and KHNYN involve multiple domains of each protein, and that the ability of TRIM25 to multimerize via its RING domain augments ZAP activity and specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!