Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The drug loading capacity of an engineered lipoprotein (eLP1) and the colloidal stability of drug-loaded eLP1s were assessed with 12 drugs with different charges/hydrophobicities. The capacity was largely correlated with their log P values, and the binding to the protein moiety was suggested for two drugs. The size of drug-loaded eLP1 formulations after freeze-drying followed by resolubilization hardly changed. The eLP1 formulation of travoprost, a clinically used drug in eye drop formulations, maintained its small size (19 nm) for 1 h at 37 °C in an artificial tear solution, whereas the liposome counterpart of 112 nm in diameter aggregated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.3c01003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!