CIZ1 in Xist seeded assemblies at the inactive X chromosome.

Front Cell Dev Biol

Department of Biology, University of York, York, United Kingdom.

Published: December 2023

There is growing evidence that X-chromosome inactivation is driven by phase-separated supramolecular assemblies. However, among the many proteins recruited to the inactive X chromosome by long non-coding RNA, so far only a minority (CIZ1, CELF1, SPEN, TDP-43, MATR3, PTBP1, PCGF5) have been shown to form -seeded protein assemblies, and of these most have not been analyzed in detail. With focus on CIZ1, here we describe 1) the contribution of intrinsically disordered regions in RNA-dependent protein assembly formation at the inactive X chromosome, and 2) enrichment, distribution, and function of proteins within -seeded assemblies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753822PMC
http://dx.doi.org/10.3389/fcell.2023.1296600DOI Listing

Publication Analysis

Top Keywords

inactive chromosome
12
ciz1 xist
4
xist seeded
4
assemblies
4
seeded assemblies
4
assemblies inactive
4
chromosome growing
4
growing evidence
4
evidence x-chromosome
4
x-chromosome inactivation
4

Similar Publications

infects the urogenital tract of men and women and causes the sexually transmitted infection trichomoniasis. Since the publication of its draft genome in 2007, the genome has drawn attention for several reasons, including its unusually large size, massive expansion of gene families, and high repeat content. The fragmented nature of the draft assembly made it challenging to obtain accurate metrics of features, such as spliceosomal introns.

View Article and Find Full Text PDF

Female mammalian cells have two X chromosomes, one of maternal origin and one of paternal origin. During development, one X chromosome randomly becomes inactivated. This renders either the maternal X (X) chromosome or the paternal X (X) chromosome inactive, causing X mosaicism that varies between female individuals, with some showing considerable or complete skew of the X chromosome that remains active.

View Article and Find Full Text PDF

Random X-chromosome inactivation is a hallmark of female mammalian somatic cells. This epigenetic mechanism, mediated by the long noncoding RNA Xist, occurs in the early embryo and is stably maintained throughout life, although inactivation is lost during primordial germ cell (PGC) development. Using a combination of single-cell allele-specific RNA sequencing and low-input chromatin profiling on developing mouse PGCs, we provide a detailed map of X-linked gene reactivation.

View Article and Find Full Text PDF

Leuconostoc mesenteroides strain MS4-derived bacteriocins: A potent antimicrobial arsenal for controlling Xylella fastidiosa infection.

Microbiol Res

January 2025

International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, Valenzano, Bari 70010, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), Piazzale Enrico Fermi, 1, Portici, Naples 80055, Italy. Electronic address:

Xylella fastidiosa subsp. pauca (Xfp) currently presents a serious threat to agriculture in Europe and in the Mediterranean, following its discovery in several countries. Addressing this bacterial plant disease with traditional agricultural practices and management strategies has proven inadequate, highlighting the urgent need for effective and environmentally safe antibacterial solutions.

View Article and Find Full Text PDF

Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!