Mosquito transgenerational antiviral immunity is mediated by vertical transfer of virus DNA sequences and RNAi.

iScience

Department of Microbiology and Immunology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne at the Peter Doherty Institute, Melbourne, VIC, Australia.

Published: January 2024

Mosquitoes are important vectors for transmission of many viruses of public and veterinary health concern. These viruses most commonly have an RNA genome and infect mosquitoes for life. The principal mosquito antiviral response is the RNAi system which destroys virus RNA. Here, we confirm an earlier study that mosquitoes infected with positive-stranded RNA arboviruses can transmit specific immunity to their offspring. We show that this -generational immunity requires replication of virus RNA and reverse transcription of vRNA to vDNA in the infected parents and intergenerational transfer of vDNA. This vDNA is both genome-integrated and episomal. The episomal vDNA sequences are flanked by retrotransposon long-terminal repeats, predominantly -like. Integrated vDNA sequences are propagated along several generations but specific immunity is effective only for a few generations and correlates with the presence of vRNA and episomal vDNA. This understanding raises new possibilities for the control of important mosquito-borne virus diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753076PMC
http://dx.doi.org/10.1016/j.isci.2023.108598DOI Listing

Publication Analysis

Top Keywords

virus rna
8
specific immunity
8
episomal vdna
8
vdna sequences
8
vdna
6
mosquito transgenerational
4
transgenerational antiviral
4
immunity
4
antiviral immunity
4
immunity mediated
4

Similar Publications

Wastewater Monitoring During the COVID-19 Pandemic in the Veneto Region, Italy: Longitudinal Observational Study.

JMIR Public Health Surveill

January 2025

Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Via Loredan 18, Padova, Italy, 39 049 8275384.

Background: As the COVID-19 pandemic has affected populations around the world, there has been substantial interest in wastewater-based epidemiology (WBE) as a tool to monitor the spread of SARS-CoV-2. This study investigates the use of WBE to anticipate COVID-19 trends by analyzing the correlation between viral RNA concentrations in wastewater and reported COVID-19 cases in the Veneto region of Italy.

Objective: We aimed to evaluate the effectiveness of the cumulative sum (CUSUM) control chart method in detecting changes in SARS-CoV-2 concentrations in wastewater and its potential as an early warning system for COVID-19 outbreaks.

View Article and Find Full Text PDF

While telegenetic counseling has increased substantially since the start of the COVID-19 pandemic, previous studies reported concerns around building rapport, nonverbal communication, and the patient-counselor relationship. This qualitative evaluation elicited feedback from genetic counselors, referring clinicians, and patients from a single healthcare organization to understand the user-driven reasons for overall satisfaction and experience. We conducted 22 in-depth, semi-structured interviews with participants from all 3 groups between February 2022 and February 2023.

View Article and Find Full Text PDF

Adeno-associated viral (AAV) vectors are increasingly used for preclinical and clinical cardiac gene therapy approaches. However, gene transfer to cardiomyocytes poses a challenge due to differences between AAV serotypes in terms of expression efficiency and . For example, AAV9 vectors work well in rodent heart muscle cells but not in cultivated neonatal rat ventricular cardiomyocytes (NRVCMs), necessitating the use of AAV6 vectors for studies.

View Article and Find Full Text PDF

CASK, a MAGUK family scaffold protein, regulates gene expression as a transcription co-activator in neurons. However, the mechanism of CASK nucleus translocation and the regulatory function of CASK in myeloid cells remains unclear. Here, we investigated its role in H5N1-infected macrophages.

View Article and Find Full Text PDF

Subtype-specific human endogenous retrovirus K102 envelope protein is a novel serum immunosuppressive biomarker of cancer.

Front Immunol

January 2025

Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Immune dysfunction is one of the hallmarks of cancer and plays critical roles in immunotherapy resistance, but there is no serum biomarker that can be used to evaluate immune-dysfunction status of cancer patients. Here, we identified subtype-specific human endogenous retrovirus K102 envelope (HERV-K102-Env) with immunosuppressive activity in circulating blood as a novel serum immunosuppressive biomarker of cancer. We first generated monoclonal antibodies against K102-Env with high sensitivity and specificity, and we developed an ELISA assay to detect serum K102-Env.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!