Fundamental properties of the Au(111)-KPF interface, particularly the potential of zero charge (PZC), exhibit pronounced variations among solvents, yet the origin remains largely elusive. In this study, we aim to link the solvent dependency to the microscopic phenomenon of electron spillover occurring at the metal-solution interface in heterogeneous dielectric media. Addressing the challenge of describing the solvent-modulated electron spillover under constant potential conditions, we adopt a semiclassical functional approach and parametrize it with first-principles calculations and experimental data. We unveil that the key variable governing this phenomenon is the local permittivity within the region approximately 2.5 Å above the metal edge. A higher local permittivity facilitates the electron spillover that tends to increase the PZC on the one hand and enhances the screening of the electronic charge that tends to decrease the PZC on the other. These dual effect lead to a nonmonotonic relationship between the PZC and the local permittivity. Moreover, our findings reveal that the electron spillover induces a capacitance peak at electrode potentials that are more negative than the PZC in concentrated solutions. This observation contrasts classical models predicting the peak to occur precisely at the PZC. To elucidate the contribution of electron spillover to the total capacitance, we decompose the total capacitance into a quantum capacitance of the metal , a classical capacitance of electrolyte solution , and a capacitance accounting for electron-ion correlations. Our calculations reveal that is negative due to the promoted electron spillover at more negative potentials. Our work not only reveals the importance of local permittivity in tuning the electron spillover but also presents a viable theoretical approach to study solvent effects on electrochemical interfaces under operating conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751779 | PMC |
http://dx.doi.org/10.1021/jacsau.3c00552 | DOI Listing |
Cell
January 2025
Beijing Life Science Academy, Beijing 102200, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China. Electronic address:
The ongoing circulation of highly pathogenic avian influenza (HPAI) A (H5N1) viruses, particularly clade 2.3.4.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China.
The hydrogen dissociation and spillover mechanism on oxide-supported Cu catalysts play a pivotal role in the hydrogenation of carbon dioxide to methanol. This study investigates the hydrogen spillover mechanism on Cu/CeO catalysts using spectral characterization under high-pressure reaction conditions and density functional theory (DFT) simulations. The research confirms that the Cu sites serve as the initial dissociation points for the hydrogen molecules.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China. Electronic address:
Despite the advancement of the Pt-catalyzed hydrogen evolution reaction (HER) through oxophilic metal-hydroxide surface hybridization, its stability in acidic solutions remains unsatisfactory. This is primarily due to excessive aggregation of active hydrogen, which hinders subsequent hydrogen desorption, coupled with the poor operational stability of metal hydroxides. In this study, we have designed Pt nanoparticles-modified NiFeCoCuCr high-entropy layered double hydroxides (Pt/HE-LDH) that exhibit exceptional catalytic activity toward HER in acidic electrolytes.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
Adv Mater
January 2025
Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
Limited by the activity-selectivity trade-off relationship, the electrochemical activation of small molecules (like O, N and CO) rapidly diminishes Faradaic efficiencies with elevated current densities (particularly at ampere levels). Nevertheless, some catalysts can circumvent this restriction in a two-electron oxygen reduction reaction (2e ORR), a sustainable pathway for activating O to hydrogen peroxide (HO). Here we report 2e ORR expedited in a fluorine-bridged copper metal-organic framework catalyst, arising from the water spillover effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!