Unmanned aerial vehicles (UAVs) become a promising enabler for the next generation of wireless networks with the tremendous growth in electronics and communications. The application of UAV communications comprises messages relying on coverage extension for transmission networks after disasters, Internet of Things (IoT) devices, and dispatching distress messages from the device positioned within the coverage hole to the emergency centre. But there are some problems in enhancing UAV clustering and scene classification using deep learning approaches for enhancing performance. This article presents a new White Shark Optimizer with Optimal Deep Learning based Effective Unmanned Aerial Vehicles Communication and Scene Classification (WSOODL-UAVCSC) technique. UAV clustering and scene categorization present many deep learning challenges in disaster management: scene understanding complexity, data variability and abundance, visual data feature extraction, nonlinear and high-dimensional data, adaptability and generalization, real-time decision making, UAV clustering optimization, sparse and incomplete data. the need to handle complex, high-dimensional data, adapt to changing environments, and make quick, correct decisions in critical situations drives deep learning in UAV clustering and scene categorization. The purpose of the WSOODL-UAVCSC technique is to cluster the UAVs for effective communication and scene classification. The WSO algorithm is utilized for the optimization of the UAV clustering process and enables to accomplish effective communication and interaction in the network. With dynamic adjustment of the clustering, the WSO algorithm improves the performance and robustness of the UAV system. For the scene classification process, the WSOODL-UAVCSC technique involves capsule network (CapsNet) feature extraction, marine predators algorithm (MPA) based hyperparameter tuning, and echo state network (ESN) classification. A wide-ranging simulation analysis was conducted to validate the enriched performance of the WSOODL-UAVCSC approach. Extensive result analysis pointed out the enhanced performance of the WSOODL-UAVCSC method over other existing techniques. The WSOODL-UAVCSC method achieved an accuracy of 99.12%, precision of 97.45%, recall of 98.90%, and F1-score of 98.10% when compared to other existing techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754923PMC
http://dx.doi.org/10.1038/s41598-023-50064-wDOI Listing

Publication Analysis

Top Keywords

deep learning
20
scene classification
20
uav clustering
20
unmanned aerial
12
aerial vehicles
12
communication scene
12
clustering scene
12
wsoodl-uavcsc technique
12
white shark
8
shark optimizer
8

Similar Publications

Purpose: To quantify outer retina structural changes and define novel biomarkers of inherited retinal degeneration associated with biallelic mutations in RPE65 (RPE65-IRD) in patients before and after subretinal gene augmentation therapy with voretigene neparvovec (Luxturna).

Methods: Application of advanced deep learning for automated retinal layer segmentation, specifically tailored for RPE65-IRD. Quantification of five novel biomarkers for the ellipsoid zone (EZ): thickness, granularity, reflectivity, and intensity.

View Article and Find Full Text PDF

Understanding the spatial and temporal dynamics of gene expression is crucial for unraveling molecular mechanisms underlying various biological processes. While traditional methods have offered insights into gene expression patterns, they primarily focus on mature mRNA transcripts, lacking real-time visualization of newly synthesized or nascent transcription events. Recent advancements in monitoring nascent transcription in live cells provide valuable insights into transcriptional dynamics.

View Article and Find Full Text PDF

Women are disproportionately affected by chronic autoimmune diseases (AD) like systemic lupus erythematosus (SLE), scleroderma, rheumatoid arthritis (RA), and Sjögren's syndrome. Traditional evaluations often underestimate the associated cardiovascular disease (CVD) and stroke risk in women having AD. Vitamin D deficiency increases susceptibility to these conditions.

View Article and Find Full Text PDF

Metabolite identification from 1D H NMR spectra is a major challenge in NMR-based metabolomics. This study introduces NMRformer, a Transformer-based deep learning framework for accurate peak assignment and metabolite identification in 1D H NMR spectroscopy. Unlike traditional approaches, NMRformer interprets spectra as sequences of spectral peaks and integrates a self-attention mechanism and peak height ratios directly into the Transformer encoder layer.

View Article and Find Full Text PDF

Monolayer assembly of charged colloidal particles at liquid interfaces opens a new avenue for advancing the additive manufacturing of thin film materials and devices with tailored properties. In this study, we investigated the dynamics of electrosprayed colloidal particles at curved droplet interfaces through a combination of physics-based computational simulations and machine learning. We employed a novel mesh-constrained Brownian dynamics (BD) algorithm coupled with Ansys® electric field simulations to model the transport and assembly of charged particles on a non-spherical droplet surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!