Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hexavalent chromium (Cr(VI)) is a known carcinogen derived from both anthropogenic and natural sources. This work reports the size-segregated concentrations of total Cr(VI) in particulate matter (PM) in Astana, the capital of Kazakhstan, and provides new insights into the gas-solid reactions of atmospheric Cr. A study of total Cr(VI) in the particulate matter, via a microwave-assisted digestion technique, was conducted using a 5-stage Sioutas Cascade impactor that captures airborne particles in size ranges: >2.5 μm, 1.0-2.5 μm, 0.50-1.0 μm, 0.25-0.50 μm, and <0.25 μm. The total Cr(VI) concentration in the size fraction <0.25 μm was the highest with a maximum value of 9.7 ng/m. This high concentration may pose a greater risk because smaller airborne particles can penetrate deeper into the lower respiratory tract of the lungs. Total suspended particles Cr(VI) exceeded the 8.0 ng/m Reference Concentration (RfC) by 22 times. The overall total Cr(VI) concentration in summer was significantly higher than in fall (p < 0.05), which could be due to factors, including higher temperatures, ozone, and NO concentrations in summer and a higher VOC concentration in fall. The results indicate that the interaction between Cr(III) and Cr(VI) through gas-solid reaction can control the speciation of atmospheric Cr.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.123210 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!