Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The complexity of biomass components leads to significant variations in the performance of biomass-based carbon dots (CDs). To shed light on this matter, this study presents a comparative analysis of the fluorescence properties of CDs using pure cellulose, lignin, and protein as models. Three CDs showed different fluorescent properties, resulting from the structure difference and carbonization behavior in the hydrothermal. The relatively gentle thermal degradation of proteins allows the macromolecular structure of amino acids to be preserved. This preservation results in a more regular lattice structure, a larger sp domain size, and N-doping, which contribute to the highest quantum yield (QY) of 8.7% of the CDs. In contrast, cellulose undergoes more severe thermal degradation with large amounts of small molecules generated, resulting in the CDs with fewer surface defects, more irregular lattice structures, and lower QY. These results provide a guideline for the design of carbon dots from different biomass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.130268 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!