The therapeutic role of SSEA3(+) human umbilical cord blood mononuclear cells in ischemic stroke model.

Neurosci Res

Cell Therapy Center, Central Hospital Affiliated to Shandong First Medical University, 250013 Jinan, PR China; Shandong Research Center of Transplantation and Tissue, 250013 Jinan, PR China. Electronic address:

Published: June 2024

AI Article Synopsis

  • Human umbilical cord blood (UCB) mononuclear cells show promise for treating ischemic stroke (IS), but the specific role of SSEA3 positive subpopulations was previously unexplored.
  • In this study, researchers isolated SSEA3(+)UCB cells, which made up about 7.01% of UCB cells, and found that these cells exhibited distinctive markers and higher Oct3/4 expression.
  • After injecting SSEA3(+)UCB cells into a rat model of ischemic stroke, the treated group showed better neurological recovery and less neuronal loss compared to the control group, suggesting that SSEA3 positive cells may be effective in IS therapy.

Article Abstract

Numerous evidences showed that human umbilical cord blood (UCB) mononuclear cells were a promising approach for the therapy of ischemic stroke(IS). The effect of stage-specific embryonic antigen 3 (SSEA3)positive subpopulation in UCB was not investigated in IS. In this study, we isolated SSEA3 positive cells from healthy UCB mononuclear cells, which comprised about 7.01% of the total UCB-mononuclear cells. Flow cytometry analysis revealed that SSEA3(+)UCB cells were almost positive for CD44 and CD45, and negative for CD73, CD90 and CD105. The expression of Oct3/4 in SSEA3(+)UCB cells were higher than that in UCB. SSEA3(+)UCB cells sorted by magnetic cell sorting were intravenously injected into the middle cerebral arterial occlusion(MCAO) rat model. Neurological score showed that SSEA3(+)UCB transplantation group exhibited significant improvements in the functional outcome of MCAO rats than UCB transplantation group. Nissl staining and microtubule association protein-2(MAP2) immunofluorescence staining showed that the SSEA3(+)UCB transplantation group decreased neuronal loss. SSEA3(+)UCB transplantation group reduced neuronal apoptosis, inhibited caspase3 expression, and decreased tumor necrosis factor α(TNF-α). These results indicate that SSEA3 positive cells are a novel subpopulation of UCB cells, which exhibit great potential for the treatment of ischemic stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2023.12.006DOI Listing

Publication Analysis

Top Keywords

transplantation group
16
mononuclear cells
12
ssea3+ucb cells
12
ssea3+ucb transplantation
12
cells
10
human umbilical
8
umbilical cord
8
cord blood
8
ischemic stroke
8
ucb mononuclear
8

Similar Publications

The prognosis of adult T-cell leukemia/lymphoma (ATL) with primary central nervous system (CNS) involvement has been unclear since the advent of new therapies. Recently, we have shown that flow cytometric CD7/CADM1 analysis of CD4 + cells (HAS-Flow) is useful to detect ATL cells that are not morphologically diagnosed as ATL cells. We investigated the role of CNS involvement in ATL using cytology and HAS-Flow by analyzing cerebrospinal fluid (CSF) from 73 aggressive ATL cases.

View Article and Find Full Text PDF

Major ABO Incompatibility in Non-Myeloablative Hematopoietic Stem Cell Transplant for Sickle Cell Disease-Not an Insurmountable Obstacle.

Pediatr Blood Cancer

January 2025

Blood and Marrow Transplant/Cellular Therapy Program, Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.

With advances in conditioning strategies and graft-versus-host disease (GvHD) prevention, hematopoietic stem cell transplantation (HSCT) is a safe, curative treatment option for pediatric patients with sickle cell disease (SCD). However, donor options have been limited in non-myeloablative matched sibling donor (MSD) setting by excluding recipients with major ABO blood group incompatible donors due to concern of the risk of significant complications such as pure red cell aplasia (PRCA). We present three cases of successful HSCT with major ABO incompatibility with their donors, and discuss strategies to safely expand the donor pool to include these donors.

View Article and Find Full Text PDF

Graft ischemia post cell transplantation to the brain: Glucose deprivation as the primary driver of rapid cell death.

Neurotherapeutics

January 2025

School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK; Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany. Electronic address:

Replacing cells lost during the progression of neurodegenerative disorders holds potential as a therapeutic strategy. Unfortunately, the majority of cells die post-transplantation, which creates logistical and biological challenges for cell therapy approaches. The cause of cell death is likely to be multifactorial in nature but has previously been correlated with hypoxia in the graft core.

View Article and Find Full Text PDF

[Clinical progress in stem cell therapy for end-stage liver disease].

Zhonghua Gan Zang Bing Za Zhi

December 2024

Department of Infectious Disease Medicine, Fifth Medical Center, PLA General Hospital, National Clinical Research Center of Infectious Diseases, Beijing100039, China.

End-stage liver disease includes liver failure and decompensated cirrhosis resulting from various etiologies and often leads to patient mortality due to complications and clinical symptoms such as severe jaundice, ascites, hepatic encephalopathy, coagulopathy, and hepatorenal syndrome. Liver transplantation is currently regarded as the most effective treatment, but its clinical application is limited by the shortage of donors, elevated expenses, and post-transplant rejection. Stem cells are a group of cells with multidirectional differentiation potential and self-renewal ability, which can improve the clinical indicator outcomes through mechanisms such as immunoregulation and promotion of tissue repair in patients with end-stage liver disease.

View Article and Find Full Text PDF

Mesenchymal stem cell conditioned medium improves hypoxic injury to protect islet graft function.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Islet transplantation is one of the most promising curative methods for type 1 diabetes mellitus (T1DM), but early hypoxic death of the graft post-transplantation impedes successful treatment. To improve the efficacy of islet transplantation and enhance islet cell resistance to hypoxia, reducing hypoxic injury before revascularization is crucial. Mesenchymal stem cells (MSCs) are known to regulate immune responses and protect against hypoxic damage through paracrine mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!