With the rapid development and widespread application of engineered nanoparticles (ENPs), understanding the fundamental interactions between ENPs and biological systems is essential to assess and predict the fate of ENPs in vivo. When ENPs are exposed to complex physiological environments, biomolecules quickly and inevitably adsorb to ENPs to form a biomolecule corona, such as a protein corona (PC). The formed PC has a significant effect on the physicochemical properties of ENPs and gives them a brand new identity in the biological environment, which determines the subsequent ENP-cell/tissue/organ interactions. Controlling the formation of PCs is therefore of utmost importance to accurately predict and optimize the behavior of ENPs within living organisms, as well as ensure the safety of their applications. In this review, we provide an overview of the fundamental aspects of the PC, including the formation mechanism, composition, and frequently used characterization techniques. We comprehensively discuss the potential impact of the PC on ENP toxicity, including cytotoxicity, immune response, and so on. Additionally, we summarize recent advancements in manipulating PC formation on ENPs to achieve the desired biological outcomes. We further discuss the challenges and prospects, aiming to provide valuable insights for a better understanding and prediction of ENP behaviors in vivo, as well as the development of low-toxicity ENPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.169590DOI Listing

Publication Analysis

Top Keywords

enps
9
engineered nanoparticles
8
protein corona
8
modulating toxicity
4
toxicity engineered
4
nanoparticles controlling
4
controlling protein
4
formation
4
corona formation
4
formation advances
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!