Background: Despite increased awareness of eosinophilic esophagitis (EoE), the diagnostic delay has remained stable over the past 3 decades. There is a need to improve the diagnostic performance and optimize resources allocation in the setting of EoE.

Objective: We developed and validated 2 point-of-care machine learning (ML) tools to predict a diagnosis of EoE before histology results during office visits.

Methods: We conducted a multicenter study in 3 European tertiary referral centers for EoE. We built predictive ML models using retrospectively extracted clinical and esophagogastroduodenoscopy (EGDS) data collected from 273 EoE and 55 non-EoE dysphagia patients. We validated the models on an independent cohort of 93 consecutive patients with dysphagia undergoing EGDS with biopsies at 2 different centers. Models' performance was assessed by area under the curve (AUC), sensitivity, specificity, and positive and negative predictive values (PPV and NPV). The models were integrated into a point-of-care software package.

Results: The model trained on clinical data alone showed an AUC of 0.90 and a sensitivity, specificity, PPV, and NPV of 0.90, 0.75, 0.80, and 0.87, respectively, for the diagnosis of EoE in the external validation cohort. The model trained on a combination of clinical and endoscopic data showed an AUC of 0.94, and a sensitivity, specificity, PPV, and NPV of 0.94, 0.68, 0.77, and 0.91, respectively, in the external validation cohort.

Conclusion: Our software-integrated models (https://webapplicationing.shinyapps.io/PointOfCare-EoE/) can be used at point-of-care to improve the diagnostic workup of EoE and optimize resources allocation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaip.2023.12.031DOI Listing

Publication Analysis

Top Keywords

external validation
12
sensitivity specificity
12
ppv npv
12
eosinophilic esophagitis
8
improve diagnostic
8
optimize resources
8
resources allocation
8
diagnosis eoe
8
model trained
8
data auc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!