Background: Diabetes patients often suffer chronic vascular complications resulting from endothelial dysfunction, smooth muscle cell (SMC) proliferation, inflammation and disturbed oxidative balance. Empagliflozin is one of three approved sodium-glucose cotransporter 2 (SGLT2) inhibitors for type 2 diabetes mellitus.

The Aim Of This Study: was to determine the protective and repairing effect of EMPA in a model of vascular endothelial and SMC damage with 25-hydroxycholesterol (25-OHC).

Methods: Human umbilical vascular endothelial cells (HUVECs) and SMCs were treated with compounds which induce DNA single-strand breaks (SSBs) and subjected to comet assay. Oxidative DNA damage was detected using endonuclease III (Nth) or human 8 oxoguanine DNA glycosylase (hOOG1). Reactive oxygen species (ROS) formation was determined by the fluorescence of a 6-carboxy-2',7'-dichlorodihydrofluoresce probe in diacetate (HDCFDA).

Results: 25-OHC-stimulated SMCs showed greater resistance to ROS generation and DNA damage compared to HUVECs. In both experimental models, EMPA treatment was associated with lower ROS production and DNA damage, including oxidative damage to purines and pyrimidines. This effect was not dose-dependent. EMPA was found to counteract this DNA damage by inhibiting ROS production.

Conclusions: It appears that the EMPA induced indirect repair of DNA by inhibiting ROS production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2023.116065DOI Listing

Publication Analysis

Top Keywords

dna damage
16
vascular endothelial
12
dna
8
model vascular
8
smooth muscle
8
ros production
8
inhibiting ros
8
damage
6
ros
5
protective effects
4

Similar Publications

Cellular senescence (CS) is a state of irreversible cell cycle arrest, and the accumulation of senescent cells contributes to age-associated organismal decline. The detrimental effects of CS are due to the senescence-associated secretory phenotype (SASP), an array of signaling molecules and growth factors secreted by senescent cells that contribute to the sterile inflammation associated with aging tissues. Recent studies, both in vivo and in vitro, have highlighted the heterogeneous nature of the senescence phenotype.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is considered as a "metabolic disease" due to various perturbations in metabolic pathways that could drive cancer development. Glycine decarboxylase (GLDC) is a mitochondrial enzyme that takes part in the oxidation of glycine to support nucleotide biosynthesis via transfer of one-carbon units. Herein, we aimed to investigate the potential role of GLDC in RCC development.

View Article and Find Full Text PDF

Cisplatin is widely used for the treatment of solid tumors and its antitumor effects are well established. However, a known complication of cisplatin administration is acute kidney injury (AKI). In this study, we examined the role of TEA domain family member 1 (TEAD1) in the pathogenesis of cisplatin-induced AKI.

View Article and Find Full Text PDF

Polybrominated diphenyl ethers (PBDEs) have been classified as a new class of persistent organic pollutants by the United Nations Environment Programs in 2009. In environment, PBDEs can undergo the degradation process to form less brominated diphenyl ethers. In the present study, the 96 h LC value for 4-bromodiphenyl ether (BDE-3) was found to be 3.

View Article and Find Full Text PDF

Under changing climatic conditions, plant exposure to high-intensity UV-B can be a potential threat to plant health and all plant-derived human requirements, including food. It's crucial to understand how plants respond to high UV-B radiation so that proper measures can be taken to enhance tolerance towards high UV-B stress. We found that BBX22, a B-box protein-coding gene, is strongly induced within one hour of exposure to high-intensity UV-B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!