A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gradual gradient distribution composite solid electrolyte for solid-state lithium metal batteries with ameliorated electrochemical performance. | LitMetric

Gradual gradient distribution composite solid electrolyte for solid-state lithium metal batteries with ameliorated electrochemical performance.

J Colloid Interface Sci

National Engineering Research Center for Rare Earth, Grirem Advanced Materials Co., Ltd., Beijing 100088, China; Rare Earth Functional Materials (Xiong'an) Innovation Center Co., Ltd., Xiong'an 071700, China; General Research Institute for Nonferrous Metals, Beijing 100088, China. Electronic address:

Published: March 2024

Composite solid electrolytes (CSEs) have emerged as promising contenders for tackling the safety concerns associated with lithium metal batteries and attaining elevated energy densities. Nonetheless, augmenting ion conductivity and curtailing the growth of lithium dendrites within the electrolyte remain pressing challenges. We have developed CSEs featuring a unique structure, in which LiLaZrTaO (LLZTO) is distributed in a gradient decline from the center to both sides (GCSE). This distinctive arrangement encompasses heightened polymer content at the edges, thereby enhancing the compatibility between CSEs and electrode materials. Concurrently, the escalated LLZTO content at the center functions to impede the proliferation of lithium dendrites. The uniform gradient distribution state facilitates the consistent and rapid transport of lithium ions. At room temperature, GCSE exhibits an ionic conductivity of 1.5 × 10 S cm, with stable constant current cycling of lithium for over 1200 h. Furthermore, CR2032 coin batteries with a LiFePO (LFP)|GCSE|Li configuration demonstrate excellent rate performance and cycling stability, yielding a discharge capacity of 120 mA h g at 0.5C and retaining 90 % capacity after 200 cycles at 60 °C. Flexible solid electrolytes with gradient structures offer substantial advantages in dealing with ion conductivity and inhibition of lithium dendrites, thereby expected to propel the practical application of lithium metal batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.12.120DOI Listing

Publication Analysis

Top Keywords

lithium metal
12
metal batteries
12
lithium dendrites
12
gradient distribution
8
composite solid
8
lithium
8
solid electrolytes
8
ion conductivity
8
gradual gradient
4
distribution composite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!