Solid-state single-photon emitters (SPEs) commonly encounter the limitation of quasi-omnidirectional radiation patterns, which poses challenges in utilizing their emission with conventional optical instruments. In this study, we demonstrate the tailoring of the far-field radiation patterns of SPEs based on colloidal quantum dots (QDs), both theoretically and experimentally, by employing a polymer-based dielectric antenna. We introduce a simple and cost-effective technique, namely low one-photon absorption direct laser writing, to achieve precise coupling of a QD into an all-polymer circular waveguide resonance grating. By optimizing the geometry parameters of the structure using 3D finite-difference time-domain simulations, resonance at the emission wavelength of QDs is achieved in the direction perpendicular to the substrate, resulting in photon streams with remarkably high directivity on both sides of the grating. Theoretical calculations predict beam divergence values below 2°, while experimental measurements using back focal plane imaging yield divergence angles of approximately 8°. Our study contributes to the evaluation of concentric circular grating structures employing low refractive index polymer materials, thereby expanding the possibilities for their application.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ad1946DOI Listing

Publication Analysis

Top Keywords

far-field radiation
8
circular waveguide
8
radiation patterns
8
high-directivity far-field
4
radiation quantum
4
quantum dot-based
4
dot-based single-photon
4
single-photon emitter
4
emitter coupled
4
coupled polymeric
4

Similar Publications

Photonics bound states in the continuum (BICs) are peculiar localized states in the continuum of free-space waves, unaffected by far-field radiation loss. Although plasmonic nano-antennas squeeze the optical field to nanoscale volumes, engineering the emergence of quasi-BICs with plasmonic hotspots remains challenging. Here, the origin of symmetry-protected (SP) quasi-BICs in a 2D system of silver-filled dimers, quasi-embedded in a high-index dielectric waveguide, is investigated through the strong coupling between photonic and plasmonic modes.

View Article and Find Full Text PDF

A Reading Range- and Frequency-Reconfigurable Antenna for Near-Field and Far-Field UHF RFID Applications.

Sensors (Basel)

January 2025

Department of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK.

In radio frequency identification (RFID), differences in spectrum policies and tag misreading in different countries are the two main issues that limit its application. To solve these problems, this article proposes a composite right/left-handed transmission line (CRLH-TL)-based reconfigurable antenna for ultra-high frequency near-field and far-field RFID reader applications. The CRLH-TL is achieved using a periodically capacitive gap-loaded parallel plate line.

View Article and Find Full Text PDF

We demonstrate unprecedented control and enhancement of thermal radiation using subwavelength conical membranes of silicon nitride. Based on fluctuational electrodynamics, we find that the focusing of surface phonon-polaritons along these membranes enhances their far-field thermal conductance by three orders of magnitude over the blackbody limit. Our calculations reveal a non-monotonic dependence of the thermal conductance on membrane geometry, with a characteristic radiation plateau emerging at small front widths due to competing effects of the polariton focusing and radiative area.

View Article and Find Full Text PDF

Background: With increasing evidence supporting three-dimensional (3D) automated breast (AB) ultrasound (US) for supplemental screening of breast cancer in increased-risk populations, including those with dense breasts and in limited-resource settings, there is an interest in developing more robust, cost-effective, and high-resolution 3DUS imaging techniques. Compared with specialized ABUS systems, our previously developed point-of-care 3D ABUS system addresses these needs and is compatible with any conventional US transducer, which offers a cost-effective solution and improved availability in clinical practice. While conventional US transducers have high in-plane resolution (axial and lateral), their out-of-plane resolution is constrained by the poor intrinsic elevational US resolution.

View Article and Find Full Text PDF

Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!