Transfer printing, the relocation of structures assembled on one surface to a different substrate by adjusting adhesive forces at the surface-substrate interface, is widely used to print electronic circuits on biological substrates like human skin and plant leaves. The fidelity of original structures must be preserved to maintain the functionality of transfer-printed circuits. This work developed new biocompatible methods to transfer a nanoscale square lattice of plasmon resonant nanoparticles from a lithographed surface onto leaf and glass substrates. The fidelity of the ordered nanoparticles was preserved across a large area in order to yield, for the first time, an optical surface lattice resonance on glass substrates. To effect the transfer, interfacial adhesion was adjusted by using laser induction of plasmons or unmounted adhesive. Optical and confocal laser scanning microscopy showed that submicron spacing of the square lattice was preserved in ≥90% of transfer-printed areas up to 4 mm. Up to 90% of ordered nanoparticles were transferred, yielding a surface lattice resonance measured by transmission UV-vis spectroscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209850 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.3c02700 | DOI Listing |
Langmuir
January 2025
Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya 467-8603, Aichi, Japan.
In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Dipartimento di Scienze Fisiche e Chimiche, Universita degli Studi dellAquila, Coppito, 67100 L'Aquila, Italy.
We present a comprehensive theoretical study, using state-of-the-art density functional theory simulations, of the structural and electrochemical properties of amorphous pristine and iron-doped nickel-(oxy)hydroxide catalyst films for water oxidation in alkaline solutions, referred to as NiCat and Fe:NiCat. Our simulations accurately capture the structural changes in locally ordered units, as reported by X-ray absorption spectroscopy, when the catalyst films are activated by exposure to a positive potential. We emphasize the critical role of proton-coupled electron transfer in the reversible oxidation of Ni(II) to Ni(III/IV) during this activation.
View Article and Find Full Text PDFJ Mol Model
January 2025
State Key Laboratory of Polyolefins and Catalysis, Shanghai, 200062, People's Republic of China.
Context: This study aims to reveal the reaction mechanisms of H and O on the NiO(100) and Ce-doped NiO(100) surfaces using the density functional theory (DFT) combined with the on-site Coulomb correction (DFT + U) method. It was found that H and O react favorably on the reduced surfaces of both materials. However, after the oxygen vacancy is filled, the activation energy for the reaction between H₂ and lattice oxygen increases.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Key Laboratory of Design & Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
The engineering design and construction of active interfaces represents a promising approach amidst numerous initiatives aimed at augmenting catalytic activity. Herein, we present a novel approach to incorporate interconnected pores within bulk single crystals for the synthesis of macroscopic porous single-crystalline rutile titanium oxide (R-TiO). The porous single crystal (PSC) R-TiO couples a nanocrystalline framework as the solid phase with pores as the fluid phase within its structure, providing unique advantages in localized structure construction and in the field of catalysis.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
Nonequilibrium membrane pattern formation is studied using meshless membrane simulation. We consider that molecules bind to either surface of a bilayer membrane and move to the opposite leaflet by flip-flop. When binding does not modify the membrane properties and the transfer rates among the three states are cyclically symmetric, the membrane exhibits spiral-wave and homogeneous-cycling modes at high and low binding rates, respectively, as in an off-lattice cyclic Potts model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!