A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ammonia Electrosynthesis from Nitrate Using a Ruthenium-Copper Cocatalyst System: A Full Concentration Range Study. | LitMetric

Electrochemical synthesis of ammonia via the nitrate reduction reaction (NO3RR) has been intensively researched as an alternative to the traditional Haber-Bosch process. Most research focuses on the low concentration range representative of the nitrate level in wastewater, leaving the high concentration range, which exists in nuclear and fertilizer wastes, unexplored. The use of a concentrated electrolyte (≥1 M) for higher rate production is hampered by poor hydrogen transfer kinetics. Herein, we demonstrate that a cocatalytic system of Ru/CuO catalyst enables NO3RR at 10.0 A in 1 M nitrate electrolyte in a 16 cm flow electrolyzer, with 100% faradaic efficiency toward ammonia. Detailed mechanistic studies by deuterium labeling and Fourier transform infrared (FTIR) spectroscopy allow us to probe the hydrogen transfer rate and intermediate species on Ru/CuO. molecular dynamics (AIMD) simulations reveal that adsorbed hydroxide on Ru nanoparticles increases the density of the hydrogen-bonded water network near the CuO surface, which promotes the hydrogen transfer rate. Our work highlights the importance of engineering synergistic interactions in cocatalysts for addressing the kinetic bottleneck in electrosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c10516DOI Listing

Publication Analysis

Top Keywords

concentration range
12
hydrogen transfer
12
transfer rate
8
ammonia electrosynthesis
4
nitrate
4
electrosynthesis nitrate
4
nitrate ruthenium-copper
4
ruthenium-copper cocatalyst
4
cocatalyst system
4
system full
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!