Introduction. Respiratory failure is the most common cause of cardiac arrest in pediatrics. Recognizing and managing it adequately is critical. Simulation is used to improve medical skills. The objective of this study was to establish the proportion of pediatric residents who recognized a respiratory arrest in a child at a simulation center. Methods. This was an observational study in 77 residents. A simulation of a patient with respiratory distress that progressed to respiratory arrest was used. Results. Among the 77 participants, 48 recognized respiratory arrest (62.3%). The mean time to recognize respiratory arrest was 38.16 seconds. Conclusion. Respiratory arrest was recognized by 62.3% of participants. Among those who did so, the average time was 38.16 seconds. Severe failures were noted in some of the expected interventions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5546/aap.2023-10172.eng | DOI Listing |
Eur J Trauma Emerg Surg
January 2025
Emergency Department, Habib bourguiba university hospital, Faculty of Medicine, Sfax University, Majida Boulila Avenue, Sfax, Tunisia.
Introduction: Electrical injuries (EIs) represent a significant clinical challenge due to their complex pathophysiology and variable presentation, ranging from minor burns to severe internal organ damage. Despite their prevalence in both; domestic and occupational settings, there remains a rareness of systematic guidelines and comprehensive literature to aid clinicians in effectively managing these injuries. Understanding these factors is crucial for developing protocols that can mitigate the risk of delayed complications, such as cardiac arrhythmias, in patients who initially appear stable.
View Article and Find Full Text PDFClin Toxicol (Phila)
January 2025
Pediatric Intensive Care Unit, Emergency Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
Introduction: Veno-arterial extracorporeal membrane oxygenation is frequently considered and implemented to help manage patients with cardiogenic shock from acute poisoning. However, utilization of veno-venous extracorporeal membrane oxygenation in acutely poisoned patients is largely unknown.
Method: We conducted a retrospective study analyzing the epidemiologic, clinical characteristics and survival of acutely poisoned patients placed on veno-venous extracorporeal membrane oxygenation using the Extracorporeal Life Support Organization registry.
Front Pharmacol
January 2025
Respiratory Department II, National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
Multisystemic smooth muscle dysfunction syndrome (MSMDS) is an autosomal dominant disorder caused by mutations in the gene, resulting in variable clinical manifestation and multi-organ dysfunction. Interstitial lung disease (ILD) is a rare phenotype of this condition. We describe a rare infant case of an 8-month-old boy who presented with progressively worsening dyspnea, along with intermittent episodes of respiratory distress and cyanosis since birth.
View Article and Find Full Text PDFInt J Reprod Biomed
November 2024
Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
Background: Coronavirus disease 2019 (COVID-19) was identified in China in late December 2019 and led to a pandemic that resulted in millions of confirmed cases and deaths. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), uses distinct receptors and co-receptors to enter host cells. Vimentin has emerged as a potential co-receptor for SARS-CoV-2 due to the high level of vimentin expression in testis tissue.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!