Two unprecedented tetratriacontanuclear and tetraicosanuclear gold(I) sulfido clusters (denoted as and ) with different temperature-induced stimulus-responsive behavior and emission property have been constructed by taking advantage of the judiciously designed bidentate phosphine ligand. represents the highest nuclearity of the gold(I) sulfido cluster with more than a thousand atoms in the molecule. Octagonal macrocycles based on metal-cluster nodes have been assembled for the first time. The self-assembly and temperature-induced stimulus-responsive processes were monitored by H and P{H} NMR spectroscopy, and the identities of the discrete gold(I) complexes were established by single-crystal structural analysis and high-resolution electrospray ionization mass spectrometry data. The steric effects exerted by the substituents on the V-shaped 1,3-bis(diphenylphosphino)benzene ligand have been shown to govern the self-assembly from the 1D cluster and 3D cage to 2D macrocycles. This work not only offers a new strategy to construct and regulate the structure of 2D macrocyclic gold(I) sulfido complexes but also lays the foundation for the future precise design and controlled construction of higher polygonal and cluster-node macrocycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c10381 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!