Fusarium graminearum is the main causal agent of Fusarium head blight (FHB) disease in wheat in Europe. To reveal population structure and to pinpoint genetic targets of selection we studied genomes of 96 strains of F. graminearum using population genomics. Bayesian and phylogenomic analyses indicated that the F. graminearum emergence in Europe could be linked to two independently evolving populations termed here as East European (EE) and West European (WE) population. The EE strains are primarily prevalent in Eastern Europe, but to a lesser extent also in western and southern areas. In contrast, the WE population appears to be endemic to Western Europe. Both populations evolved in response to population-specific selection forces, resulting in distinct localized adaptations that allowed them to migrate into their environmental niche. The detection of positive selection in genes with protein/zinc ion binding domains, transcription factors and in genes encoding proteins involved in transmembrane transport highlights their important role in driving evolutionary novelty that allow F. graminearum to increase adaptation to the host and/or environment. F. graminearum also maintained distinct sets of accessory genes showing population-specific conservation. Among them, genes involved in host invasion and virulence such as those encoding proteins with high homology to tannase/feruloyl esterase and genes encoding proteins with functions related to oxidation-reduction were mostly found in the WE population. Our findings shed light on genetic features related to microevolutionary divergence of F. graminearum and reveal relevant genes for further functional research aiming at better control of this pathogen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754465 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296302 | PLOS |
J Am Chem Soc
January 2025
Department of Chemistry, University of California, Riverside, California 92521-0403, United States.
Pseudouridine (Ψ) is the most abundant RNA modification in nature; however, not much is known about the biological functions of this modified nucleoside. Employing an unbiased quantitative proteomics method, we identified multiple candidate reader proteins of Ψ in RNA, including a cytoskeletal protein profilin-1 (PFN1). We demonstrated that PFN1 binds directly and selectively to Ψ-containing RNA.
View Article and Find Full Text PDFMol Inform
January 2025
Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Muenster, Germany.
Primary carnitine deficiency (PCD) is a rare autosomal recessive genetic disorder caused by missense mutations in the SLC22A5 gene encoding the organic carnitine transporter novel type 2 (OCTN2). This study investigates the structural consequences of PCD-causing mutations, focusing on the N32S variant. Using an alpha-fold model, molecular dynamics simulations reveal altered interactions and dynamics suggesting potential mechanistic changes in carnitine transport.
View Article and Find Full Text PDFJID Innov
March 2025
Cell Biology & Cutaneous Research, Blizard Institute, Queen Mary University of London, London, United Kingdom.
Junctional epidermolysis bullosa caused by loss-of-function variants in genes encoding the skin basement membrane proteins laminin 332, type XVII collagen, or integrin α6β4 affects patients from birth with severe blistering, eventually leading to scarring and early lethality. In this study, we have optimized a previously published junctional epidermolysis bullosa-knockout mouse model with weekly tamoxifen intraperitoneal injections, resulting in a more controllable and severe model. Owing to the titratable dosing, this model now recapitulates both early and advanced stages of the human disease, strengthening its use in therapeutic studies.
View Article and Find Full Text PDFiScience
January 2025
Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
We and others previously found that a misannotated long noncoding RNA encodes for a conserved mitochondrial transmembrane microprotein named Mitoregulin (Mtln). Beyond an established role for Mtln in lipid metabolism, Mtln has been shown to broadly influence mitochondria, boosting respiratory efficiency and Ca retention capacity, while lowering ROS, yet the underlying mechanisms remain unresolved. Prior studies have identified possible Mtln protein interaction partners; however, a lack of consensus persists, and no claims have been made about Mtln's structure.
View Article and Find Full Text PDFNoncoding RNA Res
April 2025
Kresge Eye Institute, Wayne State University, Detroit, MI, USA.
Diabetic retinopathy, a microvascular complication of diabetes, is the leading cause of blindness in adults, but the molecular mechanism of its development remains unclear. Retinal mitochondrial DNA is damaged and hypermethylated, and mtDNA-encoded genes are downregulated. Expression of a long noncoding RNA (larger than 200 nucleotides, which does not translate into proteins), encoded by mtDNA, cytochrome B (Lnc), is also downregulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!