Novel Sandwich-Structured Flexible Composite Films with Enhanced Piezoelectric Performance.

ACS Appl Mater Interfaces

School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, Zhejiang, China.

Published: January 2024

Piezoelectric poly(vinylidene fluoride) (PVDF) and its copolymers have been widely investigated for applications in wearable electric devices and sensing systems, owing to their intrinsic piezoelectricity and superior flexibility. However, their weak piezoelectricity poses major challenges for practical applications. To overcome these challenges, we propose a two-step synthesis approach to fabricate sandwich-structured piezoelectric films (BaTiO@PDA/PVDF/BaTiO@PDA) with significantly enhanced ferroelectric and piezoelectric properties. As compared to pristine PVDF films or conventional 0-3 composite films, a maximum polarization () of 11.24 μC/cm, a remanent polarization () of 5.83 μC/cm, and an enhanced piezoelectric coefficient ( ∼ 14.6 pC/N) were achieved. Simulation and experimental results have demonstrated that the sandwich structure enhances the ability of composite films to withstand higher poling electric fields in comparison with 0-3 composites. The sandwich-structured piezoelectric films are further integrated into a wireless sensor system with a high force sensitivity of 288 mV/N, demonstrating great potential for movement monitoring applications. This facile approach shows great promise for the large-scale production of composite films with remarkable flexibility, ferroelectricity, and piezoelectricity for wearable sensing devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c15046DOI Listing

Publication Analysis

Top Keywords

composite films
16
enhanced piezoelectric
8
sandwich-structured piezoelectric
8
piezoelectric films
8
films
7
piezoelectric
6
novel sandwich-structured
4
sandwich-structured flexible
4
composite
4
flexible composite
4

Similar Publications

The ability to convert moisture signals into electrical signals through contactless control underpins a wide range of applications, including health monitoring, disaster warning, and energy harvesting. Despite its potential, the effective utilization of low-grade energy remains challenging, as it often requires complex device architectures that limit scalability and integration, particularly in wearable technologies. Here, we present a soft, flexible moisture-electric converter made from cellulose nanocrystals and polyvinyl alcohol composite films, designed for a novel touchless interactive platform.

View Article and Find Full Text PDF

Edible films are significant in prolonging the shelf life of meat products. Herein, we prepared some edible coatings (EW/TNPCSs) based on egg white/chitosan/pectin as polymer matrix, containing tannic acid-nisin composite nano-crosslinker with antibacterial-antioxidant activities. The results of preservation indicated that the prepared EW/TNPCSs reduced the water loss of chilled pork and delayed the changes of taste, texture and surface color.

View Article and Find Full Text PDF

In this study, composite films were developed by encapsulating cassia oil (CO) with β-cyclodextrin through a microencapsulation technique and incorporating it into a chitosan (CS), polyvinyl alcohol (PVA) and glycerol matrix. The primary objective of the film was to inhibit bacterial growth on the surface of fresh bananas and extend their shelf life. Characterization methods were employed to evaluate the physical properties and functionality of the composite films.

View Article and Find Full Text PDF

High performance humidity sensor based on a graphene oxide-chitosan composite.

Phys Chem Chem Phys

January 2025

Temperature and Humidity Metrology, CSIR-National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi, 110012, India.

In this study, we have proposed an advanced humidity sensor based on a composite of chitosan (CS) and graphene oxide (GO), prepared by the drop casting method. Graphene oxide-chitosan (GO-CS) films with varying volumetric ratios, along with pure GO and CS films, were prepared and extensively characterized using XRD, Raman, FTIR, SEM, XPS, and water contact angle to study their structural and morphological properties. Comparative analysis of humidity sensing parameters of all prepared films revealed that the film with a volumetric ratio of 4 : 1 (GOCS-2) performs best among all of them, which is attributed to the synergistic interaction between GO and CS.

View Article and Find Full Text PDF

The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!