Context: The complexes formed as a result of the interactions between cyanophosphine (CP, HPCN) and hypohalous acid molecules (HOX, X = F, Cl, Br, and I) were studied by employing ab initio computations conducted at the MP2/aug-cc-pVTZ level. Three types of complexes were acquired (I, II, and III) as a result of the (O∙∙∙P) pnicogen bond, the (N∙∙∙H) hydrogen bond, and the (N∙∙∙X) halogen bond interaction, respectively. The results of harmonic vibrational frequency calculations with no imaginary frequencies confirmed the structures as minima. In addition, given the interaction energy of the complexes, hydrogen bond complexes of structure II have the highest stability compared to other structures. In all studied complexes, the strength of the interactions depended on the electronegativity of the halogen atoms. The characteristics and nature of the whole three types of complexes were examined and evaluated with natural bond orbital (NBO), atom in molecules (AIM), molecular electrostatic potential (MEP) maps, non-covalent interaction (NCI) index, and electron density difference (EDD) analyses.

Method: The optimization of all complexes and corresponding monomers was conducted through the ab initio method, employing the MP2 level along with the aug/cc-pVTZ basis set for all atoms, except for the iodine (I) atom, for which the aug-cc-pVTZ (PP) basis set was employed. Subsequent frequency calculations were executed to ascertain the minimum energy state of the complexes at the MP2 level and the aug/cc-pVTZ basis set, utilizing Gaussian09 software. The MEP maps of the monomers were generated using the analysis-surface suite (WFA-SAS) software package. To probe the orbital interactions within the studied complexes, NBO analysis was performed employing NBO software. The assessment of bond nature, topological features, and electron density values at critical points for the studied complexes was undertaken using AIMAll software. The NCI index was derived utilizing Multiwfn software, and its three-dimensional representation was rendered using VMD software.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-023-05809-9DOI Listing

Publication Analysis

Top Keywords

studied complexes
12
basis set
12
complexes
10
interactions cyanophosphine
8
three types
8
types complexes
8
hydrogen bond
8
frequency calculations
8
mep maps
8
electron density
8

Similar Publications

Azo dye was used to prepare a new series of complexes with chlorides of rhodium (Rh), ruthenium (Ru), and corona (Au). The prepared materials were subjected to infrared, ultraviolet-visible, and mass spectrometry, as well as thermogravimetric analysis, differential calorimetry, and elemental analysis. Conductivity, magnetic susceptibility, metal content, and chlorine content of the complexes were also measured.

View Article and Find Full Text PDF

Complementing the oft-studied construct of isolation, research has increasingly focused on existential isolation (EI), or the subjective feeling of separateness in one's experience. In the clinical realm, several studies have demonstrated that higher EI is associated with more severe mental health problems at a single cross-section of time. Moreover, one study showed that higher pretreatment EI predicted worse psychotherapy outcomes.

View Article and Find Full Text PDF

Insight into copper coordination in O reduction by water-soluble cytochrome oxidase models.

Dalton Trans

January 2025

CLIC, Institut de Chimie de Strasbourg, UMR 7177 CNRS-Unistra, 4 rue Blaise Pascal, 67000 Strasbourg, France.

Iron-copper complexes have been extensively studied in the search for efficient cytochrome oxidase models. Whereas most dinuclear materials usually focus on fine-tuning the coordination of heme-Fe, this work shows that the coordination of copper in cytochrome oxidase models should be carefully taken into consideration. A β-cyclodextrin dimer was built around a bipyridine linker and combined with Fe-tetraphenylsulfonatoporphyrinate (FeTPPS) to generate a self-assembled hydrosoluble cytochrome oxidase model.

View Article and Find Full Text PDF

FhaA plays a key role in mycobacterial polar elongation and asymmetric growth.

mBio

January 2025

Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable and Institut Pasteur de Montevideo, Montevideo, Uruguay.

Unlabelled: Mycobacteria, including pathogens like , exhibit unique growth patterns and cell envelope structures that challenge our understanding of bacterial physiology. This study sheds light on FhaA, a conserved protein in , revealing its pivotal role in coordinating cell envelope biogenesis and asymmetric growth. The elucidation of the FhaA interactome in living mycobacterial cells reveals its participation in the protein network orchestrating cell envelope biogenesis and cell elongation/division.

View Article and Find Full Text PDF

Background: The global challenge of Multidrug-resistant Tuberculosis (MDR-TB) presents a substantial public health concern, requiring extended and complex treatment regimens. Understanding the factors impacting treatment results, particularly sputum culture conversion and Body Mass Index (BMI), is crucial. This retrospective cohort investigation conducted in Punjab, Pakistan, sought to explore the correlation between BMI and sputum culture conversion in individuals diagnosed with MDR-TB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!