We investigated the role that innate immunological signaling pathways, principally nod-like receptors (NLRs) and inflammasomes, in the manifestation of the contradictory outcomes associated with opioids, namely hyperalgesia, and tolerance. The utilization of opioids for pain management is prevalent; nonetheless, it frequently leads to an increased sensitivity to pain (hyperalgesia) and reduced efficacy of the medication (tolerance) over an extended period. This, therefore, represents a major challenge in the area of chronic pain treatment. Recent studies indicate that the aforementioned negative consequences are partially influenced by the stimulation of NLRs, specifically the NLRP3 inflammasome, and the subsequent assembly of the inflammasome. This process ultimately results in the generation of inflammatory cytokines and the occurrence of neuroinflammation and the pathogenesis of hyperalgesia. We also explored the putative downstream signaling cascades activated by NOD-like receptors (NLRs) and inflammasomes in response to opioid stimuli. Furthermore, we probed potential therapeutic targets for modifying opioid-induced hyperalgesia, with explicit emphasis on the activation of the NLRP3 inflammasome. Ultimately, our findings underscore the significance of conducting additional research in this area that includes an examination of the involvement of various NLRs, immune cells, and genetic variables in the development of opioid-induced hyperalgesia and tolerance. The present review provides substantial insight into the possible pathways contributing to the occurrence of hyperalgesia and tolerance in individuals taking opioids.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10787-023-01402-xDOI Listing

Publication Analysis

Top Keywords

hyperalgesia tolerance
16
opioid-induced hyperalgesia
12
nod-like receptors
8
receptors nlrs
8
nlrs inflammasomes
8
nlrp3 inflammasome
8
hyperalgesia
7
nlrs
5
tolerance
5
nlrs inflammasome
4

Similar Publications

Analgesic Effect of Oxytocin in Alcohol-Dependent Male and Female Rats.

Alcohol

December 2024

Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA. Electronic address:

Introduction: Chronic alcohol exposure in humans and rodents causes tolerance to the analgesic effects of alcohol, and enhances pain sensitivity during alcohol withdrawal (i.e., hyperalgesia).

View Article and Find Full Text PDF

The cannabinoid CB agonist LY2828360 suppresses neuropathic pain behavior and attenuates morphine tolerance and conditioned place preference in rats.

Neuropharmacology

March 2025

Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN, USA. Electronic address:

Cannabinoid CB agonists show promise as analgesics because they lack unwanted side effects associated with direct activation of CB receptors. CB receptor activation suppresses pathological pain in animal models, but the types of pain that best respond to CB agonists are incompletely understood. This gap in knowledge may contribute to failures in clinical translation.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the challenges anesthesiologists face in managing postoperative pain for opioid-dependent patients, who may suffer from tolerance, dependence, and increased pain sensitivity.
  • It outlines a scoping review that will explore effective pain management strategies for these patients, using established methodologies for comprehensive data collection.
  • The final review will summarize findings and highlight research gaps to guide future studies on this under-researched topic.
View Article and Find Full Text PDF

Modulation of morphine antinociceptive and rewarding effect by mirtazapine in an animal model of osteoarthritic pain.

Eur J Pharmacol

January 2025

Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain.

People with chronic pain mitigate their suffering by the action of opioids. Adverse reactions aside, opioids are not exempt from potential complications like addiction and abuse, which have posed a global public health problem lately. Finding new therapeutic strategies to improve analgesia and to reduce opioid side effects has become a priority.

View Article and Find Full Text PDF

Systemic quinpirole enhances tramadol analgesia in inflammatory pain, but not in neuropathic pain in male rats.

Eur J Neurosci

December 2024

Laboratorio de Fisiología Celular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico.

Pain is a morbidity or comorbidity with a high incidence that significantly impacts the well-being of patients. In this study, we evaluated the effects of systemic administration of tramadol, a weak mu-opioid receptor (MOR) agonist, plus quinpirole (a D2-like receptor agonist). The study was performed in naïve rats and in rats with induced inflammatory and neuropathic pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!