A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioinspired Jumping Soft Actuators of the Liquid Crystal Elastomer Enabled by Photo-Mechanical Coupling. | LitMetric

Bioinspired Jumping Soft Actuators of the Liquid Crystal Elastomer Enabled by Photo-Mechanical Coupling.

ACS Appl Mater Interfaces

Department of Electronic Engineering, School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China.

Published: January 2024

Jumping, a fundamental survival behavior observed in organisms, serves as a vital mechanism for adapting to the surrounding environment and overcoming significant obstacles within a given terrain. Here, we present a light-controlled soft jumping actuator inspired by asphondylia, which employs a closed-loop structure and utilizes a liquid crystal elastomer (LCE). Photo-mechanical coupling highlights the significant influence of the light source on the actuator's jumping behavior. Manipulating the light intensity, the relative position of stimulus and light lock, and the concentration of disperse red 1 (DR1) allows precise control over both the maximum take-off velocity and jump height. Furthermore, tailoring the size of the LCE actuator offers a means of regulating jumping behavior. Upon exposure to 460 nm LED irradiation, our actuator achieves remarkable performance, with a maximum jumping height of 10 body length (BL) and take-off velocity of 62 BL/s. These actuators accumulate and rapidly release energy, enabling the effective transportation of microcargos across substantial distances. Our research yields valuable insights into the realm of soft robotics, underscoring the pivotal importance of photo-mechanical coupling in the field of soft robotics, thereby serving as a catalyst for inspiring continued exploration of agile and capable systems by prestoring elastic energy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c16530DOI Listing

Publication Analysis

Top Keywords

photo-mechanical coupling
12
liquid crystal
8
crystal elastomer
8
jumping behavior
8
take-off velocity
8
soft robotics
8
jumping
5
bioinspired jumping
4
soft
4
jumping soft
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!