Structure-based models have been instrumental in simulating protein folding and suggesting hypotheses about the mechanisms involved. Nowadays, at least for fast-folding proteins, folding can be simulated in explicit solvent using classical molecular dynamics. However, other self-assembly processes, such as protein aggregation, are still far from being accessible. Recently, we proposed that a hybrid multistate structure-based model, multi-GO, could help to bridge the gap toward the simulation of out-of-equilibrium, concentration-dependent self-assembly processes. Here, we further improve the model and show how multi-GO can effectively and accurately learn the conformational ensemble of the amyloid β42 intrinsically disordered peptide, reproduce the well-established folding mechanism of the B1 immunoglobulin-binding domain of streptococcal protein G, and reproduce the aggregation as a function of the concentration of the transthyretin 105-115 amyloidogenic peptide. We envision that by learning from the dynamics of a few minima, multi-GO can become a platform for simulating processes inaccessible to other simulation techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10782439 | PMC |
http://dx.doi.org/10.1021/acs.jctc.3c01182 | DOI Listing |
Chem Sci
January 2025
Center for Research in Biological Chemistry and Molecular Materials (CIQUS), Department of Chemical Engineering, Universidade de Santiago de Compostela Rúa de Jenaro de la Fuente, s/n 15705 Santiago de Compostela Spain
For decades, extensive surfactant libraries have been developed to meet the requirements of downstream applications. However, achieving functional diversity has traditionally demanded a vast array of chemical motifs and synthetic pathways. Herein, a new approach for surfactant design based on structural isomerism is utilised to access a wide spectrum of functionalities.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India.
The complexation behavior and binding affinity of Triton X-100 (TX-100) and Triton X-114 (TX-114) with β-cyclodextrin (β-CD) were extensively studied in an aqueous medium using a comprehensive suite of experimental techniques. These techniques allowed for the evaluation of key physicochemical parameters, including critical micelle concentration (cmc), aggregation number (), Stern-Volmer constant, and particle size distribution. These metrics were instrumental in understanding the underlying mechanism of the host-guest interaction between β-CD and Triton-X.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. Electronic address:
Functional coating materials have found extensive applications across various technological fields. However, the effectiveness of these coating depends critically on the choice of an appropriate medium. In this study, we developed an advanced "molecular glue", a CsgA variant known as CsgA-pro, which can serve as a versatile medium for biotherapy.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Plant and Environmental Health, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China. Electronic address:
Owing to their small size, morphology and release modification properties, nanopesticides are considered promising alternative strategies for enhancing biological activity and minimizing pesticide losses. In this study, we used a colloidal self-assembly method to develop a morphology-stable, regularly rod-shaped nanoselenium pesticide carrier (NSer), which was further modified with chitosan. After loading penthiopyrad (PEN), the biological activity of NSer@PEN and its impact on the physiological and biochemical processes of plants were further compared with those of spherical nanoselenium pesticides (NSes@PEN) and commercial materials (20 % PEN SC).
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.
Silk has emerged as an interesting candidate among protein-based nanocarriers due to its favorable properties, including biocompatibility and a broad spectrum of processing options to tune particle critical quality attributes. The silk protein conformation during storage in the middle silk gland of the silkworm is modulated by various factors, including the most abundant metallic ion, calcium ion (Ca). Here, we report spiking of liquid silk with calcium ions to modulate the silk nanoparticle size.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!