Chiral organic-inorganic hybrid metal halides are a promising class of nonlinear-optical materials with unique optical properties and flexible crystal structures. However, the structures and properties of chiral hybrid tellurium halides, especially second harmonic generation (SHG), have not been reported. Here, by introducing chiral organic molecule (/)-methylbenzylammonium (/-MBA), we synthesized a pair of novel zero-dimensional (0D) chiral tellurium-based hybrid halides with noncentrosymmetric space group 2, (/-MBA)TeCl (). Single-crystal X-ray diffraction analysis and solid-state circular dichroism (CD) spectra confirm that shows obvious enantiomer enrichment. Moreover, the resulting chiral products present an efficient SHG response. Interestingly, through manipulation of halogen atoms, two pairs of achiral tellurium halides, (/-MBA)TeBr () and (/-MBA)TeI (), were obtained, both of which crystallize in the centrosymmetric space group 3̅. It is noteworthy that has a narrow band gap of 1.55 eV, which is smaller than that of most 0D metal halides and comparable to that of three-dimensional lead halide, showing its potential as a highly efficient light absorber.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.3c04192 | DOI Listing |
J Org Chem
December 2024
Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China.
An efficient visible-light-induced radical carbon oximation of styrenes with 1-nitrosopyrrolidine and organic halides is developed. The reaction proceeds smoothly in the absence of a transition metal and a photocatalyst under mild conditions, producing a wide range of functionalized oximes in moderate to good yields. Mechanistic studies reveal that the reaction involves the generation of nucleophilic α-amino alkyl radicals and subsequent halogen atom transfer (XAT) with organic halides.
View Article and Find Full Text PDFSmall
December 2024
Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China.
Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long-distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond-like structural crystals AgGaQ (Q = S, Se) and ZnGeP. However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
An efficient synthesis of continuously substituted quinoline derivatives palladium-catalyzed intramolecular 6- imidoylative cyclization of -alkenyl aryl isocyanides with (hetero)aryl halides or vinylic triflates has been developed. The reaction proceeds through the concerted metalation-deprotonation (CMD) mechanism by activation of a vinyl C-H bond with imidoylpalladium assisted by the carboxylate.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
Inorganic lead-free metal halide perovskites have garnered much attention as low-toxicity alternatives to lead halide perovskites for luminescence and photovoltaic applications. However, the electronic structure and properties of these materials, including the composition dependence of the band structure, spin-orbit coupling, and Zeeman effects, remain poorly understood. Here, we investigated vacancy-ordered CsBiX (X= Cl, Br) perovskite nanocrystals using magnetic circular dichroism spectroscopy.
View Article and Find Full Text PDFAdv Mater
December 2024
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands.
In recent years, metal halide perovskite-based light-emitting diodes (LEDs) have garnered significant attention as they display high quantum efficiency, good spectral tunability, and are expected to have low processing costs. When the peak emission wavelength is beyond 900 nm the interest is even higher because of the critical importance of this wavelength for biomedical imaging, night vision, and sensing. However, many challenges persist in fabricating these high-performance NIR LEDs, particularly for wavelengths above 950 nm, which appear to be limited by low radiance and poor stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!