From the beginning of molecular theory, the interplay of chirality and magnetism has intrigued scientists. There is still the question if enantiospecific adsorption of chiral molecules occurs on magnetic surfaces. Enantiomer discrimination was conjectured to arise from chirality-induced spin separation within the molecules and exchange interaction with the substrate's magnetization. Here, it is shown that single helical aromatic hydrocarbons undergo enantioselective adsorption on ferromagnetic cobalt surfaces. Spin and chirality sensitive scanning tunneling microscopy reveals that molecules of opposite handedness prefer adsorption onto cobalt islands with opposite out-of-plane magnetization. As mobility ceases in the final chemisorbed state, it is concluded that enantioselection must occur in a physisorbed transient precursor state. State-of-the-art spin-resolved ab initio simulations support this scenario by refuting enantio-dependent chemisorption energies. These findings demonstrate that van der Waals interaction should also include spin-fluctuations which are crucial for molecular magnetochiral processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202308666 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Enantioselective discrimination is critical in several fields, particularly in pharmaceutics and clinical drug research. Chiral molecules possess unique charge transfer properties, showing an enantioselective preference for electron spin orientation when interacting with the magnetic surface. Here, we developed spin-selective charge transfer (SSCT)-based label-free surface-enhanced Raman scattering (SERS) achiral magnetic substrates for the enantioselective discrimination of chiral molecules without creating asymmetric chiral adsorption sites.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Soochow University, College of Chemistry, Chemical Engineering and Materials Science, CHINA.
Incorporating chiral molecules in the covalent organic frameworks (COFs) with uniformly ordered pores results in chiral COFs, which have been highly promising candidates for enantioseparation. Herein, a homochiral COF nanochannel membrane is reported by introducing chiral centers (L-phenylalanine methyl ester) into one of the organic ligands for the enantioseparation of chiral amino acids. The separation results show that the D-isomer is preferentially transported through the porous membrane channel.
View Article and Find Full Text PDFNat Commun
November 2024
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
Chiral metal surfaces provide an environment for enantioselective adsorption in various processes such as asymmetric catalysis, chiral recognition, and separation. However, they often suffer from limitations such as reduced enantioselectivity caused by kink coalescence and atomic roughness. Here, we present an approach using medium-entropy ceramic (MEC), specifically (CrMoTa)Si with a C40 hexagonal crystal structure, which overcomes the trade-off between thermal stability and enantioselectivity.
View Article and Find Full Text PDFAnal Chem
November 2024
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
The chiral recognition and separation of enantiomers are of great importance for biological research and the pharmaceutical industry. Preparing homochiral materials with adjustable size and chiral binding sites is beneficial for achieving an efficient chiral recognition performance. Here, a homochiral covalent organic framework membrane modified with β-cyclodextrin (CD-COF) was constructed, which was subsequently utilized as an electrochemical sensor for the enantioselective sensing of tryptophan (Trp) molecules.
View Article and Find Full Text PDFPolymers (Basel)
September 2024
Casali Center of Applied Chemistry, Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
This article presents a method for producing chiral ionic liquid-based polyurea microcapsules that can be magnetically separated. The method involves entrapping hydrophilic magnetic nanoparticles within chiral polyurea microspheres. The synthetic process for creating these magnetic polyurea particles involves oil-in-oil (o/o) nano-emulsification of an ionic liquid-modified magnetite nanoparticle (MNPs-IL) and an ionic liquid-based diamine monomer, which comprises a chiral bis(mandelato)borate anion, in a nonpolar organic solvent, toluene, and contains a suitable surfactant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!