While dark transitions made bright by molecular motions determine the optoelectronic properties of many materials, simulating such non-Condon effects in condensed phase spectroscopy remains a fundamental challenge. We derive a Gaussian theory to predict and analyze condensed phase optical spectra beyond the Condon limit. Our theory introduces novel quantities that encode how nuclear motions modulate the energy gap and transition dipole of electronic transitions in the form of spectral densities. By formulating the theory through a statistical framework of thermal averages and fluctuations, we circumvent the limitations of widely used microscopically harmonic theories, allowing us to tackle systems with generally anharmonic atomistic interactions and non-Condon fluctuations of arbitrary strength. We show how to calculate these spectral densities using first-principles simulations, capturing realistic molecular interactions and incorporating finite-temperature, disorder, and dynamical effects. Our theory accurately predicts the spectra of systems known to exhibit strong non-Condon effects (phenolate in various solvents) and reveals distinct mechanisms for electronic peak splitting: timescale separation of modes that tune non-Condon effects and spectral interference from correlated energy gap and transition dipole fluctuations. We further introduce analysis tools to identify how intramolecular vibrations, solute-solvent interactions, and environmental polarization effects impact dark transitions. Moreover, we prove an upper bound on the strength of cross correlated energy gap and transition dipole fluctuations, thereby elucidating a simple condition that a system must follow for our theory to accurately predict its spectrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0180405 | DOI Listing |
Polymers (Basel)
January 2025
Department of Chemistry and Chemical Technology, Manash Kozybayev North Kazakhstan University, Petropavlovsk 150000, Kazakhstan.
The aim of the work was to study the effect of additive concentration on changes in the adhesive and cohesive strength of bitumen. To evaluate the effectiveness of modifiers in the composition of binary and triple bitumen systems in relation to mineral fillers of two grades, the method of determination of the adhesive efficiency and thermodynamic calculations of adhesion and cohesion work were used. The following compounds were used as additives: synthesized from the oil refining waste and (waste sealing liquid).
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
Phase separation of specific proteins into liquid-like condensates is a key mechanism for forming membrane-less organelles, which organize diverse cellular processes in space and time. These protein condensates hold immense potential as biomaterials capable of containing specific sets of biomolecules with high densities and dynamic liquid properties. Despite their appeal, methods to manipulate protein condensate materials remain largely unexplored.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), Jiujiang Research Institute, Xiamen University, Xiamen, China.
Silicon-based all-solid-state batteries offer high energy density and safety but face significant application challenges due to the requirement of high external pressure. In this study, a LiSi/Si-LiSi double-layered anode is developed for all-solid-state batteries operating free from external pressure. Under the cold-pressed sintering of LiSi alloys, the anode forms a top layer (LiSi layer) with mixed ionic/electronic conduction and a bottom layer (Si-LiSi layer) containing a three-dimensional continuous conductive network.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom.
The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain unknown. Here, we show that the Aβ peptide can form biomolecular condensates on lipid bilayers both in molecular assays and in living cells.
View Article and Find Full Text PDFSmall
January 2025
UMR 8182, CNRS, Institut de Chimie Moléculaires et des Matériaux d'Orsay, Université Paris-Saclay, Orsay, 91405, France.
Capturing sunlight to fuel the water splitting reaction (WSR) into O and H is the leitmotif of the research around artificial photosynthesis. Organic semiconductors have now joined the quorum of materials currently dominated by inorganic oxides, where for both families of compounds the bandgaps and energies can be adjusted synthetically to perform the Water Splitting Reaction. However, elaborated and tedious synthetic pathways are necessary to optimize the photophysical properties of organic semiconductors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!