Solid-state electrolyte batteries have attracted significant interest as promising next-generation batteries due to their achievable high energy densities and nonflammability. In particular, curable polymer network gel electrolytes exhibit superior ion conductivity and interfacial adhesion with electrodes compared to oxide or sulfide solid electrolytes, bringing them closer to commercialization. However, the limited electrochemical stability of matrix polymers, particularly those based on poly (ethylene oxide) (PEO), presents challenges in achieving stable electrochemical performance in high-voltage lithium metal batteries. Here, these studies report a sulfate additive-incorporated thermally crosslinked gel-type polymer electrolyte (SA-TGPE) composed of a PEO-based polymer matrix and a functional sulfate additive, 1,3-propanediolcyclic sulfate (PCS), which forms stable interfacial layers on electrodes. The electrode-electrolyte interface modified by the PCS enhances the electrochemical stability of the polymer electrolyte, effectively alleviating decomposition of the PEO-based polymer matrix on the cathode. Moreover, it also mitigates side reactions of the Ni-rich NCM cathode and dendrites of lithium metal anode. These studies provide a novel perspective by utilizing interfacial modification through electrolyte additives to resolve the electrochemical instability of PEO-based polymer electrolytes in high-voltage lithium metal batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202309160 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Weijin Road 94, 300071, Tianjin, CHINA.
ACS Appl Polym Mater
December 2024
Institute for Frontier Materials (IFM), Deakin University, Burwood, Victoria 3125, Australia.
Poly(ethylene oxide)-(PEO-based solid polymer electrolytes (SPEs) are regarded as excellent candidates for solid-state lithium metal batteries (SSLMBs) due to their inherent safety advantages, processability, low cost, and excellent Li+ ion solvation. However, they suffer from limited oxidation stability (up to 4 V vs Li/Li). In this study, a crosslinked polymer-in-concentrated ionic liquid (PCIL) SPE consisting of PEO, -propyl--methylpyrrolidinium bis(fluorosulfonyl)imide (CmpyrFSI) ionic liquid (IL), and lithium bis(fluorosulfonyl)imide (LiFSI) salt is developed.
View Article and Find Full Text PDFSmall Methods
December 2024
Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China.
Polymer-based solid electrolyte boasting ultra-high safety, energy density, mechanical strength and flexibility, attracting much attention in the field of battery applications. However, its widespread application is hindered by the low conductivity, insufficient aluminium salt dissociation, high crystallization degree, short service life, etc. To solve the above problems, a composite solid polymer electrolyte (SPE) design based on polyethylene oxide (PEO, Mw = 6 000 000) with AlCl·6HO as aluminum salt and butanedinitrile (SN) as plasticizer is proposed in this paper.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
Regulating lithium salt dissociation kinetics by enhancing the interaction between inorganic fillers and lithium salts is vital for enhancing the ionic conductivity in solid-state composite polymer electrolytes (CPEs). However, the influence of fillers' external electronic environments on lithium salt dissociation dynamics remains unclear. Here, we design single-atom sites in metal-organic framework fillers for poly(ethylene oxide) (PEO)-based CPEs, boosting lithium salt dissociation through an electrocatalytic strategy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia.
The performance of solid-state lithium-metal batteries (SSLMB) is often constrained by the low ionic conductivity, narrow electrochemical window, and insufficient mechanical strength of polyethylene oxide (PEO)-based electrolytes. Inspired by the soft-outside, rigid-inside structure of starfish, we designed multifunctional "starfish-type" composite polymer electrolytes (CPEs) using electrospinning technology. These CPEs feature a three-dimensional rigid skeleton network composed of polyacrylonitrile/metal-organic frameworks/ionic liquids (PAN/MOFs/ILs), creating continuous and efficient Li transport channels: MOFs impart rigidity, PEO acts as a cushioning outer layer to enhance interfacial compatibility, and ILs reduce interfacial resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!