Background: Effects of contact force (CF) on lesion formation during pulsed field ablation (PFA) have not been well validated. The purpose of this study was to determine the relationship between average CF and lesion size during PFA using a swine-beating heart model.
Methods: A 7F catheter with a 3.5-mm ablation electrode and CF sensor (TactiCath SE, Abbott) was connected to a PFA system (CENTAURI, Galvanize Therapeutics). In 5 closed-chest swine, biphasic PFA current was delivered between the ablation electrode and a skin patch at 40 separate sites in right ventricle (28 Amp) and 55 separate sites in left ventricle (35 Amp) with 4 different levels of CF: (1) low (CF range of 4-13 g; median, 9.5 g); (2) moderate (15-30 g; median, 21.5 g); (3) high (34-55 g; median, 40 g); and (4) no electrode contact, 2 mm away from the endocardium. Swine were sacrificed at 2 hours after ablation, and lesion size was measured using triphenyl tetrazolium chloride staining. In 1 additional swine, COX (cytochrome c oxidase) staining was performed to examine mitochondrial activity to delineate reversible and irreversible lesion boundaries. Histological examination was performed with hematoxylin and eosin and Masson trichrome staining.
Results: Ablation lesions were well demarcated with triphenyl tetrazolium chloride staining, showing (1) a dark central zone (contraction band necrosis and hemorrhage); (2) a pale zone (no mitochondrial activity and nuclear pyknosis, indicating apoptosis zone); and a hyperstained zone by triphenyl tetrazolium chloride and COX staining (unaffected normal myocardium with preserved mitochondrial activity, consistent with reversible zone). At constant PFA current intensity, lesion depth increased significantly with increasing CF. There were no detectable lesions resulting from ablation without electrode contact.
Conclusions: Acute PFA ventricular lesions show irreversible and reversible lesion boundaries by triphenyl tetrazolium chloride staining. Electrode-tissue contact is required for effective lesion formation during PFA. At the same PFA dose, lesion depth increases significantly with increasing CF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCEP.123.012026 | DOI Listing |
Stroke
January 2025
Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland (Z.C., Q.Z., Y.-H.L., C.G., I.G., M.W., H.A.I.Y., D.R.K., B.W., D.R.).
Background: Ischemic stroke is a common cause of death worldwide and a main cause of morbidity. Presently, laser speckle contrast imaging, x-ray computed tomography, and magnetic resonance imaging are the mainstay for stroke diagnosis and therapeutic monitoring in preclinical studies. These modalities are often limited in terms of their ability to map brain perfusion with sufficient spatial and temporal resolution, thus calling for development of new brain perfusion techniques featuring rapid imaging speed, cost-effectiveness, and ease of use.
View Article and Find Full Text PDFBiomol Biomed
December 2024
Department of Science and Education, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Occupational Health, Anhui Provincial People's Hospital, Hefei, China.
Ischemic stroke often results in high mortality and significant disability. Current research primarily focuses on understanding neuroinflammation and cell death following a stroke to identify novel therapeutic targets. This study investigates the endothelial cell-specific role of Thioredoxin interacting protein (TXNIP) in ischemic stroke and its underlying molecular mechanisms both in vitro and in vivo.
View Article and Find Full Text PDFObjectives: To observe the effect of eye-acupuncture on the antioxidant function axis:System xc(-)-glutathione-glutathione peroxidase 4 (System xc[-]-GSH-GPX4) in the cortical tissue of ischemic penumbra of acute cerebral ischemia-reperfusion injury (CIRI) rats, so as to explore its underlying mechanism in improvement of CIRI by ameliorating the ferroptosis of neurons via antioxidant function axis.
Methods: Male SD rats were randomly divided into sham operation, model, eye-acupuncture and GPX4-inhibitor groups, with 15 rats in each group. The CIRI model was replicated by occlusion of the middle cerebral artery and reperfusion for 24 h.
J Stroke Cerebrovasc Dis
December 2024
Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; People's Hospital of Ningxiang City, Hunan University of Chinese Medicine, Changsha, Hunan 410600, China.
Objectives: Ferroptosis is involved in the development and exacerbation of cerebral ischemia-reperfusion injury (CIRI), and its inhibition can alleviate CIRI. Tetramethylpyrazine (TMP) is used for the treatment of ischemic stroke. However, the mechanism by which TMP regulates ferroptosis in CIRI is yet to be explored.
View Article and Find Full Text PDFNeuroreport
January 2025
Institute of Neurology, Anhui University of Chinese Medicine.
This study aimed to investigate the potential of electroacupuncture as an intervention for inducing 'Awakening and Opening of the Brain' in rats with stroke models induced by middle cerebral artery occlusion/reperfusion (MCAO/R). The efficacy of electroacupuncture in alleviating cerebral ischemic injury was evaluated using Longa scores, triphenyl tetrazolium chloride staining, and hematoxylin and eosin staining. Non-targeted metabolomics analysis was conducted to identify differential metabolite changes before and after electroacupuncture treatment in MCAO/R rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!