AI Article Synopsis

  • The study investigates how the stiffness and presence of a composite core affect the fracture strength and failure modes of endodontically treated molars restored with ceramic or composite materials.
  • Sixty depulped molars were tested using different restoration designs, including monolithic endocrowns and crowns with separate cores, to see how they hold up under simulated chewing conditions.
  • Overall, no significant differences in fracture loads were found among the different restoration types, but the type of restoration and material did influence how they failed when subjected to stress.

Article Abstract

Introduction: Different materials and restorative concepts have been proposed over the years to restore endodontically treated teeth (ETT). Monolithic ceramic and composite restoration can be lute to the tooh, without the use of a post. However, little is known how the material stiffness and presence of a composite core will affect the survival and failure mode. The objective of this in-vitro study was to evaluate the fracture strength and failure mode of endodontically treated molars, restored with ceramic or hybrid composite monolithic restoration, in the presence of absence of a composite core.

Materials And Methods: Sixty depulped molars were restored with a lithium-disilicate (e.max CAD) or hybrid composite (Cerasmart) restoration. Both materials were used in a monolithic approach, but with 3 different designs: (a) monolithic endocrown, (b) crown with a separate composite core, and (c) overlay without core buildup or pulpal extension. Ten sound teeth were used as control group. All groups were thermocycled (10,000 cycles), subsequently loaded in a chewing simulator (100,000 cycles) and finally loaded until fracture.

Results: Peak fracture loads and failure modes were registered. No significant differences were seen between the groups in terms of fracture load. Failure modes were statistically significantly different among groups with significant correlation between restoration type and material. (p < 0.001 and p = 0.033, respectively). No group presented significantly higher fracture resistance. Although ceramic crowns and overlays presented the highest repairability, all restored ETT were within the range of the intact tooth' fracture strength.

Conclusion: No restoration presented significant different fracture loads. However, the type of restoration and material choice were correlated to the fracture mode.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jerd.13187DOI Listing

Publication Analysis

Top Keywords

failure mode
12
endodontically treated
12
fracture strength
8
strength failure
8
treated teeth
8
composite core
8
molars restored
8
hybrid composite
8
failure modes
8
composite
6

Similar Publications

Genetic Assessment of Living Kidney Transplant Donors: A Survey of Canadian Practices.

Can J Kidney Health Dis

January 2025

Multiorgan Transplant Program, Division of Nephrology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.

Background: Kidney failure is a prevalent condition with tendency for familial clustering in up to 27% of the affected individuals. Living kidney donor (LKD) transplantation is the optimal treatment option; however, in Canada, more than 45% of LKDs are biologically related to their recipients which subjects recipients to worse graft survival and donors to higher future risk of kidney failure. Although not fully understood, this observation could be partially explained by genetic predisposition to kidney diseases.

View Article and Find Full Text PDF

Background: Simulation offers an opportunity to practice neonatal resuscitation and test clinical systems to improve safety. The authors used simulation-based clinical systems testing (SbCST) with a Healthcare Failure Mode and Effect Analysis (HFMEA) rubric to categorize and quantify latent safety threats (LSTs) during in situ training in eight rural delivery hospitals. The research team hypothesized that most LSTs would be common across hospitals.

View Article and Find Full Text PDF

Degeneration of the nucleus pulposus affects the internal volumetric strains and failure location of adjacent human metastatic vertebral bodies.

Acta Biomater

January 2025

Department of Industrial Engineering, School of Engineering and Architecture, University of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy. Electronic address:

Intervertebral disc (IVD) degeneration is suspected to affect the distribution of stress and strain near the vertebral endplates and in the underlying bone. This scenario is worsened by the presence of metastatic lesions on the vertebrae (primarily thoracic vertebrae (60-80%)) which increase the risk of fracture. As such, this study aimed to evaluate the effect of IVD degeneration on the internal volumetric strains and failure modes of human metastatic vertebral bodies.

View Article and Find Full Text PDF

Wear particle reaction is present in every arthroplasty. Sometimes, this reaction may lead to formation of large pseudotumors. As illustrated in this case, the volume of the reaction may be out of proportion to the volume of the wear scar.

View Article and Find Full Text PDF

To investigate the water damage at the interface between emulsified asphalt and aggregate under the action of external water infiltration, firstly, cetyltrimethylammonium bromide was used as an emulsifier to prepare emulsified asphalt in the laboratory, and its basic properties were tested. Then, based on molecular dynamics, an emulsified asphalt-aggregate interface model with different water contents was constructed to calculate the adhesion work of the emulsified asphalt-aggregate interface. The results show that the simulated values of emulsified asphalt density, cohesive energy density, and solubility are in good agreement with the experimental values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!